[1] Walker B, Steffen W. IGBP Science No.1: A Synthesis of GCTE and Related Research[M]. Stockholm: IGBP, 1997: 1-24. [2] Canadell J G, Pataki D E, Pitelka L F. Terrestrial Ecosystems in a Changing World[M]. German: Springer, 2006. [3] Chinese Academy of Sciences. Department of Life Sciences of State Commission of Chinese National Natural Science Foundation, Global Changes and Ecological Systems[M]. Shanghai: Shanghai Science and Technology Press, 1994: 62-95. [4] Zhang X S. A vegetation-climate classification system for global change studies in China. Quaternary Sciences, 1993, 2: 157-269. [5] White R P, Murray S, Rohweder M, et al . Grassland Ecosystems[M]. Washington DC, USA: World Resources Institute 2000. [6] Xie G D, Zhang Y L, Lu C X, et al . Study on valuation of rangeland ecosystem services of China. Journal of Natural Resources, 2001, 16(1): 47-53. [7] Parton W J, Scurlock J, Ojima D S, et al . Impact of climate change on grassland production and soil carbon worldwide. Global Change Biology, 1995, 1(1): 13-22. [8] Scurlock J, Hall D O. The global carbon sink: a grassland perspective. Global Change Biology, 1998, 4(2): 229-233. [9] Fang J Y, Yang Y H, Ma W H, et al . Ecosystem carbon stocks and their changes in China’s grassland. Science of China: Life Science, 2010, 40(7): 566-576. [10] Ren J Z, Liang T G, Lin H L, et al . Study on grassland’s responses to global climate change and its carbon sequestration potentials. Acta Prataculturae Sinica, 2011, 20(2): 1-22. [11] Zhou W, Gang C C, Li J L, et al . Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982-2010. Acta Geographica Sinica, 2014, 69(1): 15-30. [12] Yang Y H, Piao S L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. Journal of Plant Ecology, 2006, 30(1): 1-8. [13] Wang G X, Hu H C, Wang Y B, et al . Response of alpine cold ecosystem biomass to climate changes in permafrost regions of the Tibetan Plateau. Journal of Glaciology and Geocryology, 2007, 29(5): 671-679. [14] Ren J Z, Hu Z Z, Mu X D, et al . The comprehensive sequential classification system of grassland and its genesis significance. Grassland of China, 1980, 1(1): 6. [15] Liang T G, Feng Q S, Huang X D, et al . Review in the study of comprehensive sequential classification system of grassland. Acta Prataculturae Sinica, 2011, 20(5): 252-258. [16] Ren J Z. Classification and cluster applicable for grassland type. Acta Agrestia Sinica, 2008, 16(1): 4-10. [17] Liang T G, Feng Q S, Cao J J, et al . Changes in global potential vegetation distributions from 1911 to 2000 as simulated by the Comprehensive Sequential Classification System approach. Chinese Science Bulletin, 2012, 57(11): 1298-1310. [18] Ren J Z, Hu Z Z, Zhao J, et al . A grassland classification system and its application in China. Rangeland Journal, 2008, 30(2): 199-209. [19] Lin H L, Wang X L, Zhang Y J, et al . Spatio-temporal dynamics on the distribution, extent, and net primary productivity of potential grassland in response to climate changes in China. Rangeland Journal, 2013, 35(4): 409-425. [20] Ma X L, Li W J, Chen Q G. Preliminary exploration of native grassland classification of Gansu Province based on GIS and comprehensive and sequential grassland classification method. Pratacultural Science, 2009, 26(5): 7-13. [21] Wu J, Li C B, Zhang D G, et al . Suggestions for improvement of moisture and temperature index in comprehensive and sequential classification system of grasslands suitable for 3S technology. Chinese Journal of Grassland, 2012, 34(4): 109-115. [22] Zhao M W, Yue T X, Sun X F, et al . High accuracy simulation of aboveground biomass in Northern China based on IOCSG. Acta Ecologica Sinica, 2014, 34(17): 4891-4899. [23] Odum E P, Barrett G W. Fundamentals of Ecology[M]. New York: Saunders College Publishing, 1971. [24] Piao S L, Fang J Y. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982-1999. Journal of Natural Resources, 2002, 17(3): 373-380. [25] Gang C C, Zhou W, Li J L, et al . Assessing the spatiotemporal variation in distribution, extent and NPP of terrestrial ecosystems in response to climate change from 1911 to 2000. PloS One, 2013, 8(11): e80394. [26] Lin H L, Chang S H, Li F. Research progress on grassland net primary productivity (NPP) model. Pratacultural Science, 2007, 24(12): 26-29. [27] Scurlock J, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 2002, 8(8): 736-753. [28] Gang C C, Zhou W, Wang Z Q, et al . Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy and Crop Science, 2015, 201: 57-68. [29] Ma W H, Yang Y H, He J S, et al . The temperate grassland biomass in Inner Mongolia and its relationship with environmental factors. Science of China: Life Science, 2008, 38(1): 84-92. [30] Zhang G G, Kang Y M, Han G D, et al . Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biology, 2011, 17(1): 377-389. [31] University of East Anglia Climatic Research Unit (CRU), Jones P, Harris I. CRU Time Series (TS) High Resolution Gridded Datasets[DB/OL]. NCAS British Atmospheric Data Centre. (2015-12-22) [2016-03-01]. http://badc.nerc.ac.uk. [32] Harris I, Jones P D, Osborn T J, et al . Updated high resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. International Journal of Climatology, 2014, 34(3): 623-642. [33] Olson D M, Dinerstein E, Wikramanayake E D, et al . Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 2001, 51(11): 933-938. [34] Kaplan J O. Geophysical Applications of Vegetation Modeling[D]. Skane: Lund University, 2001. [35] Holdridge L R. Determination of world plant formations from simple climate data. Science, 1947, 105: 367-368. [36] Ramankutty N, Foley J A. ISLSCP II Potential Natural Vegetation Cover. ISLSCP Initiative II Collection, Data set[DB/OL]. Oak Ridge National Laboratory Distributed Active Archive Center. (2010-01-25) [2016-03-10]. http://daac. ornl. gov. [37] Bontemps S, Defourny P, Bogaert E V, et al . GLOBCOVER 2009-Products Description and Validation Report[R]. Belgiqu: Université Catholique de Louvain, 2011. [38] Bartholomé E, Belward A S. GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 2005, 26(9): 1959-1977. [39] Justice C O, Townshend J, Vermote E F, et al . An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 2002, 83(1): 3-15. [40] Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass. The Global Carbon Cycle, 1979, 13: 129-182. [41] Whittaker R H, Likens G E. Primary production: the biosphere and man. Human Ecology, 1973, 1(4): 357-369. [42] Olson. Major World Ecosystem Complexes Ranked by Carbon in Vegetation[DB/OL]. Oak Ridge National Laboratory Distributed Active Archive Center. (1985-09-10) [2016-03-10]. http://daac. ornl. gov. [43] Sala O E, Parton W J, Joyce L A, et al . Primary production of the central grassland region of the United States. Ecology, 1988, 69(1): 40-45. [44] Fan J W, Zhong H P, Liang B, et al . Carbon stock in grassland ecosystem and its affecting factors. Grassland of China, 2003, (6): 52-59. [45] Harrison S P, Prentice I C. Climate and CO 2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology, 2003, (9): 983-1004. [46] Yue T X, Fan Z M, Chen C F, et al . Surface modelling of global terrestrial ecosystems under three climate change scenarios. Ecological Modelling, 2011, 222(14): 2342-2361. [47] Zhou G S, Zhang X S. A natural vegetation NPP model. Journal of Plant Ecology, 1995, 19(3): 193-200. [48] Uchijima Z, Seino H. Agroclimatic evaluation of net primary productivity of natural vegetation. 1. Chikugo model for evaluating net primary productivity. Journal of the Meteorological Society of Japan, 1985, 40: 343-352. [49] Olson R J, Scurlock J, Prince S D, et al . NPP Multi-Biome: Global Primary Production Data Initiative Products, R2. Data set[DB/OL]. Oak Ridge National Laboratory Distributed Active Archive Center. (2013-08-29) [2016-03-10]. http://daac. ornl. gov. [50] Jager H I, Hargrove W W, Brandt C C, et al . Constructive contrasts between modeled and measured climate responses over a regional scale. Ecosystems, 2000, 3(4): 396-411. [51] Hickler T, Vohland K, Feehan J, et al . Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography, 2012, 21(1): 50-63. [52] Cruz R V, Harasawa H, Lal M, et al . Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007: 469-506. [53] Berthelot M, Friedlingstein P, Ciais P, et al . Global response of the terrestrial biosphere to CO 2 and climate change using a coupled climate-carbon cycle model. Global Biogeochemical Cycles, 2002, 16(4): 1084. [54] Callaghan T V, Björn L O, Chapin Iii F S, et al . Arctic Tundra and Polar Ecosystems[M]//Arctic Climate Impact Assessment. Cambridge: Cambridge University Press, 2005: 243-252. [55] Wigley B J, Bond W J, Hoffman M. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers. Global Change Biology, 2010, 16(3): 964-976. [56] Ran G, Wang X, Ouyang Z, et al . Spatial and temporal relationships between precipitation and ANPP of four types of grasslands in northern China. Journal of Environmental Sciences, 2006, 18(5): 1024-1030. [57] Liu X N, Ren Z C, Li C B, et al . Net primary productivity of grasslands in China under climate change. Grassland and Turf, 2010, 30(3): 7-14. [6] 谢高地, 张钇锂, 鲁春霞, 等. 中国自然草地生态系统服务价值. 自然资源学报, 2001, 16(1): 47-53. [9] 方精云, 杨元合, 马文红, 等. 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 2010, 40(7): 566-576. [10] 任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22. [11] 周伟, 刚成诚, 李建龙, 等. 1982-2010年中国草地覆盖度的时空动态及其对气候变化的响应. 地理学报, 2014, 69(1): 15-30. [12] 杨元合, 朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系. 植物生态学报, 2006, 30(1): 1-8. [13] 王根绪, 胡宏昌, 王一博, 等. 青藏高原多年冻土区典型高寒草地生物量对气候变化的响应. 冰川冻土, 2007, 29(5): 671-679. [14] 任继周, 胡自治, 牟新待, 等. 草原的综合顺序分类法及其草原发生学意义. 中国草原, 1980, 1(1): 6. [15] 梁天刚, 冯琦胜, 黄晓东, 等. 草原综合顺序分类系统研究进展. 草业学报, 2011, 20(5): 252-258. [16] 任继周. 分类, 聚类与草原类型. 草地学报, 2008, 16(1): 4-10. [20] 马轩龙, 李文娟, 陈全功. 基于GIS与草原综合顺序分类法对甘肃省草地类型的划分初探. 草业科学, 2009, 26(5): 7-13. [21] 吴静, 李纯斌, 张德罡, 等. 适用于3S技术的草地综合顺序分类法水热指标改进. 中国草地学报, 2012, 34(4): 109-115. [22] 赵明伟, 岳天祥, 孙晓芳, 等. 基于草地综合顺序分类系统(IOCSG)的中国北方草地地上生物量高精度模拟. 生态学报, 2014, 34(17): 4891-4899. [24] 朴世龙, 方精云. 1982-1999年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17(3): 373-380. [26] 林慧龙, 常生华, 李飞. 草地净初级生产力模型研究进展. 草业科学, 2007, 24(12): 26-29. [29] 马文红, 杨元合, 贺金生, 等. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学: 生命科学, 2008, 38(1): 84-92. [44] 樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003, (6): 52-59. [47] 周广胜, 张新时. 自然植被净第一性生产力模型初探. 植物生态学报, 1995, 19(3): 193-200. [57] 柳小妮, 任正超, 李纯斌, 等. 气候变化下中国草地 NPP 的研究. 草原与草坪, 2010, 30(3): 7-14. |