[1] Li Y, Liu J X, Xiang Q B. Progress in zoysia grasses germplasm resources research. Acta Prataculturae Sinica, 2014, 23(3): 343-349. [2] Du Y J, Yu L, Sun J X, et al . Study on cold-resistance and its mechanism of different cultivars of Zoysia japonica Steud. Acta Agrestia Sinica, 2008, 16(4): 347-352. [3] Liang X H, AN M Y, Song Z, et al . Effects of exogenous glycine betaine on the physiological characteristics of Zoysia japonica under low-temperature stress. Acta Prataculturae Sinica, 2015, 24(9): 181-188. [4] Arumuganathan K, Tallury S P, Fraser M L, et al . Nuclear DNA content of thirteen turfgrass species by flow cytometry. Crop science, 1999, 39(5): 1518-1521. [5] Huang B, Fry J D. Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Science, 1998, 38(4): 1017-1022. [6] Xu B C, Shan L, Huang Z B, et al . Review on the adaptability and response of turfgrass to drought stress. Grassland of China, 2001, 23(2): 55-61. [7] Ernst H A, Olsen A N, Skriver K, et al . Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports, 2004, 5(3): 297-303. [8] Souer E, van Houwelingen A, Kloos D, et al . The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170. [9] Aida M, Ishida T, Fukaki H, et al . Genes involved in organ separation in Arabidopsis : an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 1997, 9(6): 841-857. [10] Ooka H, Satoh K, Doi K, et al . Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana . DNA Research, 2003, 10(6): 239-247. [11] Chen X L, Wang A X, Zhang Z Z, et al . Genome-wide identification and bioinformatics analysis of NAC gene family in tomato. Plant Physiology Journal, 2014, 50(4): 461-470. [12] Yamaguchi M, Ohtani M, Mitsuda N, et al . VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis . The Plant Cell, 2010, 22(4): 1249-1263. [13] Nakashima K, Takasaki H, Mizoi J, et al . NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2012, 1819(2): 97-103. [14] Hu H, Dai M, Yao J, et al . Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences, 2006, 103(35): 12987-12992. [15] Hu H, You J, Fang Y, et al . Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008, 67(1-2): 169-181. [16] Zheng X, Chen B, Lu G, et al . Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 2009, 379(4): 985-989. [17] Wu Y, Deng Z, Lai J, et al . Dual function of Arabidopsis ATAF 1 in abiotic and biotic stress responses. Cell Research, 2009, 19(11): 1279-1290. [18] Delessert C, Kazan K, Wilson I W, et al . The transcription factor ATAF 2 represses the expression of pathogenesis-related genes in Arabidopsis . The Plant Journal, 2005, 43(5): 745-757. [19] Gao F, Xiong A, Peng R, et al . OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 100(3): 255-262. [20] Lu M, Ying S, Zhang D F, et al . A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis . Plant Cell Reports, 2012, 31(9): 1701-1711. [21] Lu M, Zhang D F, Shi Y S, et al . Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis . Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115(3): 443-455. [22] Qi Y C, Wang F F, Liu W Q, et al . Cloning and analysis of NAC transcription factor in tobacco ( Nicotiana tabacum L.). Scientia Agricultura Sinica, 2011, 44(11): 2225-2233. [23] Li X L, Hu Y X, Yang X, et al . Structure and functions of NAC transcription factors involved in abiotic stress. Plant Physiology Journal, 2013, 49(10): 1009-1017. [24] Li W, Han L, Qian Y Q, et al . Bioinformatics analysis of abiotic stress related NAC transcription factors. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(3): 454-464. [1] 李亚, 刘建秀, 向其伯. 结缕草属种质资源研究进展. 草业学报, 2002, 11(2): 7-14. [2] 杜永吉, 于磊, 孙吉雄, 等. 结缕草品种抗寒性和抗寒机理研究. 草地学报, 2008, 16(4): 347-352. [3] 梁小红, 安勐颖, 宋峥, 等. 外源甜菜碱对低温胁迫下结缕草生理特性的影响. 草业学报, 2015, 24(9):181-188. [6] 徐炳成, 山仑, 黄占斌. 草坪草对干旱胁迫的反应及适应性研究进展. 中国草地, 2001, 23(2): 55-61. [11] 陈秀玲, 王傲雪, 张珍珠, 等. 番茄 NAC 转录因子家族的鉴定及生物信息学分析. 植物生理学报, 2014, 50(4): 461-470. [22] 戚元成, 王菲菲, 刘卫群, 等. 烟草中 NAC 类转录因子基因的克隆及分析. 中国农业科学, 2011, 44(11): 2225-2233. [23] 李小兰, 胡玉鑫, 杨星, 等. 非生物胁迫相关 NAC 转录因子的结构及功能. 植物生理学报, 2013, 49(10): 1009-1017. [24] 李伟, 韩蕾, 钱永强, 等. 非生物逆境胁迫相关 NAC 转录因子的生物信息学分析. 西北植物学报, 2012, 32(3): 454-464. |