[1] Reeves D W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 1997, 43(1): 131-167. [2] Franzluebbers A J. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research, 2002, 66(2): 95-106. [3] Dlamini P, Chivenge P, Manson A, et al . Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma, 2014, 235: 372-381. [4] Dai E F, Huang Y, Zhao D S. Review on soil carbon sequestration potential in grassland ecosystems. Acta Ecologica Sinica, 2015, 35(12): 3908-3918. [5] Huo Y S, Yang B, Yang X D. Advances in researches on grassland soil organic carbon. Chinese Journal of Grassland, 2014, (6): 90-96. [6] Six J, Conant R T, Paul E A, et al . Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 2002, 241(2): 155-176. [7] Coban H, Miltner A, Kästner M. Fate of fatty acids derived from biogas residues in arable soil. Soil Biology and Biochemistry, 2015, 91: 58-64. [8] Jackson R B, Banner J L, Jobbágy E G, et al . Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 2002, 418: 623-626. [9] Green L E, Porras-Alfaro A, Sinsabaugh R L. Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. Journal of Ecology, 2008, 96(5): 1076-1085. [10] Gad A, Abdel-Samie A G. Study on desertification of irrigated arable lands in Egypt. II-Salinization. Egyptian Journal of Soil Science, 2000, 40(3): 373-384. [11] Gomes L, Arrue J, Lopez M, et al . Wind erosion in a semiarid agricultural area of Spain: the WELSONS project. Catena, 2003, 52(3): 235-256. [12] Hu G, Dong Z, Lu J, et al . The developmental trend and influencing factors of Aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau. Aeolian Research, 2015, 19: 275-281. [13] Shu X Y, Hu Y F, Jiang S L, et al . Influences of grassland desertification on soil particles composition and soil phosphorus and potassium nutrients in northwestern Sichuan. Journal of Arid Land Resources and Environment, 2015, 29(8): 173-179. [14] Li X R, Jia X H, Dong G R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China. Journal of Arid Environments, 2006, 64(3): 505-522. [15] Tang S, Zhang Y, Guo Y, et al . Changes of soil CO 2 flux under different stocking rates during spring-thaw period in a northern desert steppe, China. Atmospheric Environment, 2015, 122: 343-348. [16] Jacobs A, Ronda R, Holtslag A. Water vapour and carbon dioxide fluxes over bog vegetation. Agricultural and Forest Meteorology, 2003, 116(1): 103-112. [17] Li X Y, Yao Z Y, Wang H W, et al . The driving mechanism of sandy desertification in the Zoige Basin of China. Journal of Desert Research, 2015, 35(1): 51-59. [18] Lu R K. Methods of Agricultural Chemical Analysis in Soil[M]. Beijing: Chinese Agricultural Science and Technology Press, 1999: 231-260. [19] Xu G H, Zheng H Y. Analytical Handbook of Soil Microbes[M]. Beijing: Agriculture Press, 1986: 91-109. [20] Gao H J, Dou S, Zhu P, et al . Effects of long-term located fertilization on humus fraction in black soil. Journal of Jilin Agricultural University, 2008, 30(6): 825-829. [21] Cai X B, Qian C, Zhang Y Q. Characterization of soil biological properties on degraded alpine grasslands. Chinese Journal of Applied Ecology, 2007, 18(8): 1733-1738. [22] Joergensen R G, Brookes P C, Jenkinson D S. Survival of the soil microbial biomass at elevated temperatures. Soil Biology and Biochemistry, 1990, 22(8): 1129-1136. [23] Grinhut T, Hadar Y, Chen Y. Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biology Reviews, 2007, 21(4): 179-189. [24] Dou S, Wang S. Review of different microorganisms effect on humus formation. Journal of Jilin Agricultural University, 2011, 33(2): 119-125. [25] Ren S L, Yi S H, Chen J J, et al . Responses of green fractional vegetation cover of alpine grassland to climate warming and human activities. Patacultural Science, 2013, 30(4): 506-514. [26] Fornara D A, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 2008, 96(2): 314-322. [27] Yan Y C, Tang H P. Differentiation of related concepts of grassland degradation. Acta Prataculturae Sinica, 2008, 17(1): 93-99. [28] Huang D Q, Yu L, Zhang Y S, et al . Belowground biomass and its relationship to environmental factors of natural grassland on the northern slopes of the Qilan Mountains. Acta Prataculturae Sinica, 2011, 20(5): 1-10. [29] Jin Y X, Xu B, Yang X C, et al . Belowground biomass and features of environmental factors in the degree of grassland desertification. Acta Prataculturae Sinica, 2013, 22(5): 44-51. [30] Zhao Y H, Wei X H, Miao Y J, et al . Plant community and reproductive allocation of alpine meadow with different degradation degrees in Northern Tibet. Acta Agrestia Sinica, 2012, 20(2): 221-228. [31] Lu H, Yao T, Li J H. Vegetation and soil microorganism characteristics of degraded grasslands. Acta Prataculturae Sinica, 2015, 24(5): 34-43. [32] Qiong Z, De-Hui Z, Zhi-Ping F A N, et al . Effect of land cover change on soil phosphorus fractions in southeastern horqin sandy land, Northern China. Pedosphere, 2008, 18(6): 741-748. [33] Liu R, Zhao H, Zhao X. Desertification impact on macro-invertebrate diversity in grassland soil in Horqin, northern China. Procedia Environmental Sciences, 2011, 10: 1401-1409. [34] Doetterl S, Stevens A, Six J, et al . Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 2015, 8(10): 780-783. [35] Jin H X, He F L, Li C L, et al . Vegetation characteristics, abundance of soil microbes, and soil physic-chemical properties in desertified alpine meadows of Maqu. Acta Prataculturae Sinica, 2015, 24(11): 20-28. [36] Cao L H, Liu H M, Zhao S W. Distribution of soil organic carbon and its relationship with soil physical and chemical properties on degraded alpine meadows. Pratacultural Science, 2011, 28(8): 1411-1415. [37] Wen H Y, Fu H, Zhao H L. The relationship between plant species biodiversity and soil fertility in degraded sandy grassland. Pratacultural Science, 2008, 25(10): 6-9. [38] Cai X B, Peng Y L, Wei S Z, et al . Variation of organic carbon and humus carbon in alpine steppe soil and functions of microorganisms therein. Acta Pedologica Sinica, 2014, 51(4): 834-844. [39] Ponge J F. Plant-soil feedbacks mediated by humus forms: a review. Soil Biology and Biochemistry, 2013, 57: 1048-1060. [40] Hu L, Wang C T, Wang G X, et al . Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. [41] Wang C T, Long R J, Wang Q L, et al . Changes in soil organic carbon and microbial biomass carbon in different degradation successional stages of alpine meadows in the headwater region of Three Rivers in China. Chinese Journal of Applied and Environmental Biology, 2008, 14(2): 225-230. [42] Wu Y S, Ma W L, Li H, et al . Seasonal variations of soil organic carbon and microbial biomass carbon in degraded desert steppes of Inner Mongolia. Chinese Journal of Applied Ecology, 2010, (2): 312-316. [43] Lv G F, Wu Y S, Li H, et al . Microorganisms, soil nutrient and enzyme activity changing with the proceeding of desert steppe degradation in Inner Mongolia. Journal of Desert Research, 2010, 30(1): 104-109. [4] 戴尔阜, 黄宇, 赵东升. 草地土壤固碳潜力研究进展. 生态学报, 2015, 35(12): 3908-3918. [5] 霍艳双, 杨波, 杨雪栋. 草地土壤有机碳研究进展. 中国草地学报, 2014, (6): 90-96. [13] 舒向阳, 胡玉福, 蒋双龙, 等. 川西北草地沙化对土壤颗粒组成和土壤磷钾养分的影响. 干旱区资源与环境, 2015, 29(8): 173-179. [17] 李晓英, 姚正毅, 王宏伟, 等. 若尔盖盆地沙漠化驱动机制. 中国沙漠, 2015, 35(1): 51-59. [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 231-260. [19] 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京: 农业出版社, 1986: 91-109. [20] 高洪军, 窦森, 朱平, 等. 长期施肥对黑土腐殖质组分的影响. 吉林农业大学学报, 2008, 30(6): 825-829. [21] 蔡晓布, 钱成, 张永清. 退化高寒草原土壤生物学性质的变化. 应用生态学报, 2007, 18(8): 1733-1738. [24] 窦森, 王帅. 不同微生物对形成不同腐殖质组分的差异性研究进展. 吉林农业大学学报, 2011, 33(2): 119-125. [25] 任世龙, 宜树华, 陈建军, 等. 高山草地植被盖度对气候变暖和人类活动的响应. 草业科学, 2013, 30(4): 506-514. [27] 闫玉春, 唐海萍. 草地退化相关概念辨析. 草业学报, 2008, 17(1): 93-99. [28] 黄德青, 于兰, 张耀生, 等. 祁连山北坡天然草地地下生物量及其与环境因子的关系. 草业学报, 2011, 20(5): 1-10. [29] 金云翔, 徐斌, 杨秀春, 等. 不同沙化程度草原地下生物量及其环境因素特征. 草业学报, 2013, 22(5): 44-51. [30] 赵玉红, 魏学红, 苗彦军, 等. 藏北高寒草甸不同退化阶段植物群落特征及其繁殖分配研究. 草地学报, 2012, 20(2): 221-228. [31] 卢虎, 姚拓, 李建宏. 高寒地区不同退化草地植被和土壤微生物特性及其相关性研究. 草业学报, 2015, 24(5): 34-43. [35] 金红喜, 何芳兰, 李昌龙, 等. 玛曲沙化高寒草甸植被, 土壤理化性质及土壤微生物数量研究. 草业学报, 2015, 24(11): 20-28. [36] 曹丽花, 刘合满, 赵世伟. 退化高寒草甸土壤有机碳分布特征及与土壤理化性质的关系. 草业科学, 2011, 28(8): 1411-1415. [37] 文海燕, 傅华, 赵哈林. 退化沙质草地植物群落物种多样性与土壤肥力的关系. 草业科学, 2008, 25(10): 6-9. [38] 蔡晓布, 彭岳林, 魏素珍, 等. 高寒草原土壤有机碳与腐殖质碳变化及其微生物效应. 土壤学报, 2014, 51(4): 834-844. [40] 胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014,23(3): 8-19. [41] 王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化. 应用与环境生物学报, 2008, 14(2): 225-230. [42] 吴永胜, 马万里, 李浩, 等. 内蒙古退化荒漠草原土壤有机碳和微生物生物量碳含量的季节变化. 应用生态学报, 2010, (2): 312-316. [43] 吕桂芬, 吴永胜, 李浩, 等. 荒漠草原不同退化阶段土壤微生物、土壤养分及酶活性的研究. 中国沙漠, 2010, 30(1): 104-109. |