[1] Parad G A, Zarafshar M, Striker G G, et al . Some physiological and morphological responses of Pyrus boissieriana to flooding. Trees, 2013, 27(5): 1387-1393. [2] Yordanova R Y, Popova L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiologiae Plantarum, 2007, 29(6): 535-541. [3] Yordanova R Y, Uzunova A N, Popova L P. Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants. Biologia Plantarum, 2005, 49(2): 317-319. [4] Patrick W H, Mikkelsen D S, Wells B R. Plant nutrient behavior in flooded soil[A]. In: Engelstad O P. Fertilizer Technology & Use[M]. Madison: Soil Science Society of America, 1985: 197-228. [5] Pezeshki S R. Wetland plant responses to soil flooding. Environmental and Experimental Botany, 2001, 46(3): 299-312. [6] Pierce S C, Moore M T, Larsen D, et al . Macronutrient (N, P, K) and redoximorphic metal (Fe, Mn) allocation in Leersia oryzoides (Rice Cutgrass) grown under different flood regimes. Water, Air, & Soil Pollution, 2010, 207(1-4): 73-84. [7] Smethurst C F, Garnett T, Shabala S. Nutritional and chlorophyll fluorescence responses of lucerne ( Medicago sativa ) to waterlogging and subsequent recovery. Plant & Soil, 2005, 270(1): 31-45. [8] Voesenek L A C J, Colmer T D, Pierik R, et al . How plants cope with complete submergence. New Phytologist, 2006, 170(2): 213-226. [9] Jin X, Wang R, Zhou X R, et al . Vegetative growth and nutrient element accumulation of Amorpha fruticosa under different waterlogging stress conditions. Pratacultural Science, 2013, 30(6): 904-909. [10] Liu Z B, Cheng R M, Xiao W, et al . Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense . Plos One, 2014, 9(9): e107636-e107636. [11] Wang H F, Zeng B, Li Y, et al . Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir Region, China. Journal of Plant Ecology, 2008, 32(5): 977-984. [12] Chen F Q, Huang Y Z, Zeng X. Biological response of Cynodon dactylon vegetative propagule to simulated flooding. Journal of Tropical and Subtropical Botany, 2010, 18(1): 15-20. [13] Zhang X Y, Fan D Y, Xie Z Q, et al . Clonal integration enhances performance of Cynodon dactylon subjected to submergence. Chinese Journal of Plant Ecology, 2010, 34(9): 1075-1083. [14] Li Z J, Xiong G M, Deng L Q, et al . Dynamics of antioxidant enzyme activities in roots of Cynodon dactylon and Hemarthria altissima recovering from annual flooding. Acta Ecologica Sinica, 2013, 33(11): 3362-3369. [15] Tan S D, Zhu M Y, Dang H S, et al . Physiological responses of bermudagrass ( Cynodon dactylon (L.) Pers.) to deep submergence stress in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2009, 29(7): 3685-3691. [16] Tan S D, Zhang S J, Zhang K R, et al . Effect of long-time and deep submergence on recovery growth and photosynthesis of three grass species in Three Gorges Reservoir Area. Journal of Wuhan Botanical Research, 2009, 27(4): 391-396. [17] Pei S X, Hong M, Guo Q S, et al . Photosynthetic characteristics of Cynodon dactylon in hydro-fluctuation belt of Three Gorges Reservoir at the end of flooding. Chinese Journal of Ecology, 2014, 22(12): 3222-3229. [18] Li Q, Song L, Wang S M, et al . Influence of water level on nutritional characteristics of Cynodon dactylon population in water-level-fluctuating zone of the Three Gorges Reservoir. Ecological Science, 2015, 34(4): 15-20. [19] Li C X, Zhong Z C. Photosynthetic physio-response of Taxodium ascendens seedlings to different soil water regimes. Forest Research, 2006, 19(1): 54-60. [20] Luo F L, Nagel K A, Zeng B, et al . Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species. Annals of Botany, 2009, 104(7): 1435-1444. [21] Yang Y H, Wu J C, Wu P T. Effects of superabsorbent polymer on the physiological characteristics of wheat under drought stress and rehydration. African Journal of Biotechnology, 2011, 10(66): 14836-14843. [22] Gao J F. Experimental Guide of Physiology of Plant[M]. Beijing: Higher Education Press, 2006: 74-77. [23] Mukassabi T A, Polwart A, Coleshaw T, et al . How long can young Scots pine seedlings survive waterlogging. Trees, 2012, 26(5): 1641-1649. [24] Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress. Annals of Botany, 2005, 96(4): 501-505. [25] Nishiuchi S, Yamauchi T, Takahashi H, et al . Mechanisms for coping with submergence and waterlogging in rice. Rice, 2012, 5(17): 2314-2322. [26] Xiong H Y, Yang Q, An B G, et al . Molecular mechanism of rice adaptation and improvement strategies to sumergence stress. Journal of Wuhan University (Natural Science Edition), 2013, 59(1): 17-23. [27] Li Q H, Liu S P, Zhi S Y, et al . Adaptation mechanism of three herbs in the water-level-fluctuation-zone of reservoir to complete submergence. Journal of Tropical and Subtropical Botany, 2013, 21(5): 459-465. [28] Chen H J, Qualls R G, Blank R R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium . Aquatic Botany, 2005, 82(4): 250-268. [29] Tang Z C, Kozlowski T T. Some physiological and morphological responses of Quercus macrocarpa seedlings to flooding. Canadian Journal of Forest Research, 1982, 12(2): 196-202. [30] Striker G G. Flooding Stress on Plants: Anatomical, Morphological and Physiological Responses[M]. I Rijeka-Croatia: Intech Open Access Publisher, 2012: 1-28. [31] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(4): 317-345. [32] Pierce S C, Pezeshki S R, Moore M T. Ditch plant response to variable flooding: A case study of Leersio oryzoides (rice cutgrass). Journal of Soil & Water Conservation, 2007, 62(4): 216-225. [33] Liu Z B, Cheng R M, Xiao W F, et al . Effects of flooding on growth, photosynthesis and fluorescence characteristics of Distylium chinese . Scientia Silvae Sinicae, 2014, 50(9): 73-81. [34] Ronzhina D A, Nekrasova G F, P'Yankov V I. Comparative characterization of the pigment complex in emergent, floating, and submerged leaves of hydrophytes. Russian Journal of Plant Physiology, 2004, 51(1): 21-27. [35] Casanova M T, Brock M A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities. Plant Ecology, 2000,147(2): 237-250. [36] Li S W, Pezeshki S R, Goodwin S. Effects of soil moisture regimes on photosynthesis and growth in cattail ( Typha latifolia ). Acta Oecologica, 2004, 25(1): 17-22. [37] Tracewell C A, Vrettos J S, Bautista J A, et al . Carotenoid photooxidation in photosystem II. Archives of Biochemistry & Biophysics, 2001, 385(1): 61-69. [38] Li X L, Li N, Yang J, et al . Morphological and photosynthetic responses of riparian plant Distylium chinense seedlings to simulated autumn and winter flooding in Three Gorges Reservoir Region of the Yangtze River, China. Acta Ecologica Sinica, 2011, 31(1): 31-39. [39] Zhou J, Wei H, Lü Q, et al . Effects of soil water regime on leaf photosynthetic characteristics of slash pine ( Pinus elliottii Engelm.) seedlings. Chinese Journal of Ecology, 2012, 31(1): 30-37. [40] Chen F Q, Huang Y Z, Fan D Y, et al . Ecophysiological responses of vegetative propagule of Cynodon dactylon to simulated summer flooding. Guihaia, 2010, 30(4): 488-492. [41] Luo M J, Cui L J, Zhang S G, et al . Effects of flooding stress on water and mineral nutrients in Aegiceras corniculatum seedlings. Journal of Fujian College of Forestry, 2012, 32(4): 336-340. [42] Ashraf M, Rehman H. Mineral nutrient status of corn in relation to nitrate and long-term waterlogging. Journal of Plant Nutrition, 1999, 22(8): 1253-1268. [43] Thomas D S, Montagu K D, Conroy J P. Leaf inorganic phosphorus as a potential indicator of phosphorus status, photosynthesis and growth of Eucalyptus grandis seedlings. Forest Ecology & Management, 2006, 223(1-3): 267-274. [44] Rubio G, Oesterheld M, Alvarez C R, et al . Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics. Oecologia, 1997, 112(2): 150-155. [45] Akram N A, Shahbaz M, Ashraf M. Nutrient acquisition in differentially adapted populations of Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L. under drought stress. Pakistan Journal of Botany, 2008, 40(4): 1433-1440. [46] Pan R Z, Wang X J, Li N H. Plant Physiology[M]. Beijing: Higher Education Press, 2004: 66-68. [47] Shabala S, Shabala L, Barcelo J, et al . Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant, Cell and Environment, 2014, 37(10): 2216-2233. [48] Board J E. Waterlogging effects on plant nutrient concentrations in soybean. Journal of Plant Nutrition, 2008, 31(5): 828-838. [49] Girdhar K P. Elucidation of Abiotic Stress Signaling in Plants[M]. New York: Springer, 2015: 227-238. [50] Zhou M, Gong X L, Wang Y, et al . Improvement of cerium of photosynthesis functions of maize under magnesium deficiency. Biological Trace Element Research, 2011, 142(3): 760-772. [51] Xiong Y J, Chen S F, Li E X, et al . Research progress and outlook on magnesium deficiency in plants. Journal of Anhui Agricultural Science, 2010, 38(15): 7754-7757. [52] Cakmak I, Kirkby E A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 2008, 133(4): 692-704. [53] Yang G H, Yang L T, Jiang H X, et al . Physiological impacts of magnesium-deficiency in Citrus seedlings : photosynthesis, antioxidant system and carbohydrates. Trees, 2012, 26(4): 1237-1250. [54] Zhang Y X, Li L F, Chai T Y, et al . Mechanisms of manganese toxicity and manganese tolerance in plants. Chinese Bulletin of Botany, 2010, 45(4): 506-520. [55] Pereira E G, Oliva M A, Rosado-Souza L, et al . Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Science, 2013, 201-202(3): 81-92. [56] Vinit-Dunand F, Epron D, Alaoui-Sosse B, et al . Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science, 2002, 163(1): 53-58. [9] 金茜, 王瑞, 周向睿, 等. 水淹胁迫对紫穗槐生长及营养元素积累的影响. 草业科学, 2013, 30(6): 904-909. [11] 王海锋, 曾波, 李娅, 等. 长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响. 植物生态学报, 2008, 32(5): 977-984. [12] 陈芳清, 黄友珍, 曾旭. 狗牙根营养繁殖体对模拟水淹的生物学响应. 热带亚热带植物学报, 2010, 18(1): 15-20. [13] 张想英, 樊大勇, 谢宗强, 等. 克隆整合有助于狗牙根抵御水淹. 植物生态学报, 2010, 34(9): 1075-1083. [14] 李兆佳, 熊高明, 邓龙强, 等. 狗牙根与牛鞭草在三峡库区消落带水淹结束后的抗氧化酶活力. 生态学报, 2013, 33(11): 3362-3369. [15] 谭淑端, 朱明勇, 党海山, 等. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29(7): 3685-3691. [16] 谭淑端, 张守君, 张克荣, 等. 长期深淹对三峡库区三种草本植物的恢复生长及光合特性的影响. 武汉植物学研究, 2009, 27(4): 391-396. [17] 裴顺祥, 洪明, 郭泉水, 等. 三峡库区消落带水淹结束后狗牙根的光合生理生态特性. 生态学杂志, 2014, 22(12): 3222-3229. [18] 李强, 宋力, 王书敏, 等. 水位变化对三峡库区消落带狗牙根种群营养特征的影响. 生态科学, 2015, 34(4): 15-20. [19] 李昌晓, 钟章成. 池杉幼苗对不同土壤水分水平的光合生理响应. 林业科学研究, 2006, 19(1): 54-60. [22] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 74-77. [26] 熊怀阳, 阳菁, 安保光, 等. 水稻适应淹水胁迫的分子机理及品种改良. 武汉大学学报: 理学版, 2013, 59(1): 17-23. [27] 李秋华, 刘送平, 支崇远, 等. 三种水库消落带草本植物对完全水淹的适应机制研究. 热带亚热带植物学报, 2013, 21(5): 459-465. [33] 刘泽彬, 程瑞梅, 肖文发, 等. 模拟水淹对中华蚊母树生长及光合特性的影响. 林业科学, 2014, 50(9): 73-81. [39] 周珺, 魏虹, 吕茜, 等. 土壤水分对湿地松幼苗光合特征的影响. 生态学杂志, 2012, 31(1): 30-37. [40] 陈芳清, 黄友珍, 樊大勇, 等. 水淹对狗牙根营养繁殖植株的生理生态学效应. 广西植物, 2010, 30(4): 488-492. [41] 罗美娟, 崔丽娟, 张守攻, 等. 淹水胁迫对桐花树幼苗水分和矿质元素的影响. 福建林学院学报, 2012, 32(4): 336-340. [46] 潘瑞炽, 王小菁, 李娘辉. 植物生理学[M]. 北京: 高等教育出版社, 2004: 66-68. [51] 熊英杰, 陈少风, 李恩香, 等. 植物缺镁研究进展及展望. 安徽农业科学, 2010, 38(15): 7754-7757. [54] 张玉秀, 李林峰, 柴团耀, 等. 锰对植物毒害及植物耐锰机理研究进展. 植物学报, 2010, 45(4): 506-520. |