[1] Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice ( Oryza sativa L.). Journal of Experimental Botany, 2007, 58(9): 2319-2327. [2] Vitousek P M, Aber J D, Howarth R W, et al . Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 1997, 7(3): 737-750. [3] Tilman D, Cassman K G, Matson P A, et al . Agricultural sustainability and intensive production practices. Nature, 2002, 418: 671-677. [4] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3): 357-363. [5] Galloway J N, Townsend A R, Erisman J W, et al . Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892. [6] Wang R, Okamoto M, Xing X, et al . Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology, 2003, 132(2): 556-567. [7] Scheible W R, Morcuende R, Czechowski T, et al . Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, 2004, 136(1): 2483-2499. [8] Wang Y H, Garvin D F, Kochian L V. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology, 2001, 127(1): 345-359. [9] Krouk G, Crawford N M, Coruzzi G M, et al . Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology, 2010, 13(3): 265-272. [10] Miller A J, Fan X, Shen Q, et al . Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany, 2008, 59(1): 111-119. [11] Kusano M, Fukushima A, Redestig H, et al . Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany, 2011, 62(4): 1439-1453. [12] Steuer R. Review: on the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 2006, 7(2): 151-158. [13] Camacho D, de la Fuente A, Mendes P. The origin of correlations in metabolomics data. Metabolomics, 2005, 1(1): 53-63. [14] Rubin G, Tohge T, Matsuda F, et al . Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis . Plant Cell, 2009, 21(11): 3567-3584. [15] Pracharoenwattana I, Zhou W, Keech O, et al . Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant Journal, 2010, 62(5): 785-795. [16] Broyart C, Fontaine J X, Molinié R, et al . Metabolic profiling of maize mutants deficient for two glutamine synthetase isoenzymes using 1H-NMR-based metabolomics. Phytochemical Analysis, 2010, 21(1): 102-109. [17] Masumoto C, Miyazawa S-I, Ohkawa H, et al . Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proceedings of the National Academy of Sciences, 2010, 107(11): 5226-5231. [18] Urbanczyk-Wochniak E, Fernie A R. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato ( Solanum lycopersicum ) plants. Journal of Experimental Botany, 2005, 56: 309-321. [19] Brechenmacher L, Lei Z, Libault M, et al . Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum . Plant Physiology, 2010, 153(4): 1808-1822. [20] Baier M C, Barsch A, Küster H, et al . Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiology, 2007, 145(4): 1600-1618. [21] Sanchez D H, Schwabe F, Erban A, et al . Comparative metabolomics of drought acclimation in model and forage legumes. Plant, Cell & Environment, 2012, 35(1): 136-149. [22] Byrne S L, Foito A, Hedley P E, et al . Early response mechanisms of perennial ryegrass ( Lolium perenne ) to phosphorus deficiency. Annals of Botany, 2010, 107(2): 243-254. [23] Rasmussen S, Parsons A J, Bassett S, et al . High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne . New Phytologist, 2007, 173(4): 787-797. [24] Zhao Z J, Hu L X, Hu T, et al . Differential metabolic response of two tall fescue genotypes to heat stress. Acta Prataculturae Sinica, 2015, 24(3): 58-69. [25] Guo J, McCulley R L, McNear Jr D H. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Frontiers in Plant Science, 2015, 6: 183. [26] Li X, Yu E, Fan C, et al . Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis . Planta, 2012, 236(2): 579-596. [27] Gelli M, Duo Y, Konda A R, et al . Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15(1): 179. [28] Patel D, Franklin K A. Temperature-regulation of plant architecture. Plant Signaling & Behavior, 2009, 4(7): 577-579. [29] Argueso C T, Ferreira F J, Kieber J J. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell & Environment, 2009, 32(9): 1147-1160. [30] Walch-Liu P, Ivanov I I, Filleur S, et al . Nitrogen regulation of root branching. Annals of Botany, 2006, 97(5): 875-881. [31] Tian Q, Chen F, Liu J, et al . Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. Journal of Plant Physiology, 2008, 165(9): 942-951. [32] Zhang H, Rong H, Pilbeam D. Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana . Journal of Experimental Botany, 2007, 58(9): 2329-2338. [33] Gifford M L, Dean A, Gutierrez R A, et al . Cell-specific nitrogen responses mediate developmental plasticity. Proceedings of the National Academy of Sciences, 2008, 105(2): 803-808. [34] Vidal E A, Araus V, Lu C, et al . Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana . Proceedings of the National Academy of Sciences, 2010, 107(9): 4477-4482. [35] Krouk G, Lacombe B, Bielach A, et al . Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell, 2010, 18(6): 927-937. [24] 赵状军, 胡龙兴, 胡涛, 等. 不同品系高羊茅应答高温胁迫的初级代谢产物分析. 草业学报, 2015, 24(3): 58-69. |