Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (11): 205-215.DOI: 10.11686/cyxb2017041
Previous Articles Next Articles
NIU Xue-Li, NAN Zhi-Biao*
Received:
2017-02-16
Revised:
2017-05-04
Online:
2017-11-20
Published:
2017-11-20
NIU Xue-Li, NAN Zhi-Biao. Review of minirhizotron applications for study of fine roots in grassland[J]. Acta Prataculturae Sinica, 2017, 26(11): 205-215.
[1] Scurlock J, Hall D. The global carbon sink: a grassland perspective. Global Change Biology, 1998, 4(2): 229-233. [2] Nan Z B. The grassland farming system and sustainable agricultural development in China. Grassland Science, 2005, 51(1): 15-19. [3] Parton W J, Stewart J W B, Cole C V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 1988, 5(1): 109-131. [4] McGill W, Hunt H, Woodmansee R, et al . Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils. Ecological Bulletins, 1981, 33: 105-113. [5] Plantureux S, Peeters A, McCracken D. Biodiversity in intensive grasslands: Effect of management, improvement and challenges. Agronomy Research, 2005, 3(2): 153-164. [6] Conant R T, Paustian K, Elliott E T. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 2001, 11(2): 343-355. [7] Brodie E, Edwards S, Clipson N. Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiology Ecology, 2003, 45(2): 105-114. [8] Osterkamp W, Hupp C, Stoffel M. The interactions between vegetation and erosion: new directions for research at the interface of ecology and geomorphology. Earth Surface Processes and Landforms, 2012, 37(1): 23-36. [9] Fattet M, Fu Y, Ghestem M, et al . Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 2011, 87(1): 60-69. [10] Burylo M, Hudek C, Rey F. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena, 2011, 84(1/2): 70-78. [11] Du Q, Zhong Q C, Wang K Y. Root effect of three vegetation types on shoreline stabilization of Chongming Island, Shanghai. Pedosphere, 2010, 20(6): 692-701. [12] Goebel M, Hobbie S E, Bulaj B, et al . Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecological Monographs, 2011, 81(1): 89-102. [13] Wan L Q, Hou X Y, Ren J Z. The application system coupling in grassland agro-system in China. Chinese Journal of Eco-agriculture, 2004, 12(1): 162-164. 万里强, 侯向阳, 任继周. 系统耦合理论在我国草地农业系统应用的研究. 中国生态农业学报, 2004, 12(1): 162-164. [14] Ren J Z, Nan Z B, Hao D Y. The three major interfaces within pratacultural system. Acta Prataculturae Sinica, 2000, 9(1): 1-8. 任继周, 南志标, 郝敦元. 草业系统中的界面论. 草业学报, 2000, 9(1): 1-8. [15] Zhou B Z, Zhang S G, Fu M Y. Minirhizotron, a new technique for plant root system research: its invention, development and application. Chinese Journal of Ecology, 2007, 26(2): 253-260. 周本智, 张守攻, 傅懋毅. 植物根系研究新技术Minirhizotron的起源、发展和应用. 生态学杂志, 2007, 26(2): 253-260. [16] Nadelhoffer K J. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist, 2000, 147(1): 131-139. [17] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 2010, 147(1): 13-31. [18] Wu Y B, Che R X, Ma S, et al . Estimation of root production and turnover in an alpine meadow: comparison of three measurement methods. Acta Ecologica Sinica, 2014, 34(13): 3529-3537. 吴伊波, 车荣晓, 马双, 等. 高寒草甸植被细根生产和周转的比较研究. 生态学报, 2014, 34(13): 3529-3537. [19] Guo D, Li H, Mitchell R J, et al . Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 2008, 177(2): 443-456. [20] Liao X Q. Review on research methods of plant roots. World Agriculture, 1995, 7: 23-24. 廖兴其. 根系研究方法评述. 世界农业, 1995, 7: 23-24. [21] Huang R D. Development of methods of studying root systems. Journal of Shengyang Agiricultral University, 1991, 22(2): 164-168. 黄瑞冬. 植物根系研究方法的发展. 沈阳农业大学学报, 1991, 22(2): 164-168. [22] Hendrick R L, Pregitzer K S. Patterns of fine root mortality in two sugar maple forests. Nature, 1993, 361: 59-61. [23] Joslin J D, Wolfe M H. Disturbances during minirhizotron installation can affect root observation data. Soil Science Society of America Journal, 1999, 63(1): 218-221. [24] Johnson M G, Tingey D T, Phillips D L, et al . Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 2001, 45(3): 263-289. [25] Waddington J. Observation of plant roots in situ. Canadian Journal of Botany, 1971, 49(10): 1850-1852. [26] Tierney G L, Fahey T J. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research, 2002, 32(9): 1692-1697. [27] Pritchard S G, Strand A E, Mccormack M L, et al . Fine root dynamics in a loblolly pine forest are influenced by free-air-CO 2 -enrichment: a six-year-minirhizotron study. Global Change Biology, 2008, 14(3): 588-602. [28] Day F P, Weber E P, Hinkle C, et al . Effects of elevated atmospheric CO 2 on fine root length and distribution in an oak-palmetto scrub ecosystem in central Florida. Global Change Biology, 1996, 2(2): 143-148. [29] Machado R M A, do Rosario M, Oliveira G, et al . Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant and Soil, 2003, 255(1): 333-341. [30] Merrill S D. Pressurized-wall minirhizotron for field observation of root growth dynamics. Agronomy Journal, 1992, 84: 755-758. [31] Martin D, Chambers J. Restoration of riparian meadows degraded by livestock grazing: above- and belowground responses. Plant Ecology, 2002, 163(1): 77-91. [32] Kobiela B, Biondini M, Sedivec K. Comparing root and shoot responses to nutrient additions and mowing in a restored semi-arid grassland. Plant Ecology, 2016, 217(3): 303-314. [33] Iversen C, Murphy M, Allen M, et al . Advancing the use of minirhizotrons in wetlands. Plant and Soil, 2012, 352(1/2): 23-39. [34] Vamerali T, Bandiera M, Mosca G. Minirhizotrons in modern root studies[M]//Measuring Roots. Berlin Heidelberg: Springer, 2012: 341-361. [35] Majdi H. Root sampling methods-applications and limitations of minirhizotron technique. Plant and Soil, 1996, 185: 255-258. [36] Hendrick R L, Pregitzer K S. Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant and Soil, 1996, 185: 293-304. [37] Shi J W, Yu S Q, Yu L Z, et al . Application of minirhizotron in fine root studies. Chinese Journal of Applied Ecology, 2006, 17(4): 715-719. 史建伟, 于水强, 于立忠, 等. 微根管在细根研究中的应用. 应用生态学报, 2006, 17(4): 715-719. [38] Bai W M, Cheng W X, Li L H. Applications of minirhizotron techniques to root ecology research. Acta Ecologica Sinica, 2005, 25(11): 3076-3081. 白文明, 程维信, 李凌浩. 微根窗技术及其在植物根系研究中的应用. 生态学报, 2005, 25(11): 3076-3081. [39] Guo L B, Wang M, Gifford R M. The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant & Soil, 2007, 299(1/2): 251-262. [40] Pilon R, Picon-Cochard C, Bloor J M G, et al . Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant & Soil, 2012, 364(1/2): 395-408. [41] Guo D L. Plant root system: architecture, function and the status in material cycle of ecosystem[M]//Lectures in Modern Ecology (ш) Advances and Key Topics. Beijing: Higher Education Press, 2007: 92-109. 郭大立. 植物根系: 结构、功能及在生态系统物质循环中的地位[M]//现代生态学讲座(Ⅲ)学科进展与热点论题. 北京: 高等教育出版社, 2007: 92-109. [42] Vogt K A, Grier C C, Gower S T, et al . Overestimation of net root production: A real or imaginary problem. Ecology, 1985, 67(2): 577-579. [43] Schoettle A W, Shoettle A W. Foliage and fine root longevity of pines. Ecological Bulletins, 1994, 43(43): 136-153. [44] Quan X K, Yu S Q, Shi J W, et al . Minirhizotron and radiocarbon methods-their application and comparison in estimating fine root longevity. Chinese Journal of Ecology, 2007, 26(3): 428-434. 全先奎, 于水强, 史建伟, 等. 微根管法和同位素法在细根寿命研究中的应用及比较. 生态学杂志, 2007, 26(3): 428-434. [45] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 2000, 125(3): 389-399. [46] Pregitzer K S, Zak D R, Curtis P S, et al . Atmospheric CO 2 , soil nitrogen and turnover of fine roots. New Phytologist, 1995, 129(4): 579-585. [47] Eissenstat D M, Yanai R D. The ecology of root lifespan. Advances in Ecological Research, 1997, 27: 1-60. [48] Hendricks J J, Nadelhoffer K J, Aber J D. Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology & Evolution, 1993, 8(5): 174-178. [49] Gill R A, Burke I C, Lauenroth W K, et al . Longevity and turnover of roots in the shortgrass steppe: influence of diameter and depth. Plant Ecology, 2002, 159(2): 241-251. [50] Wells C E, Glenn D M, Eissenstat D M. Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae). American Journal of Botany, 2002, 89(1): 79-87. [51] Mei L, Wang Z Q, Cheng Y H, et al . A review: factors influencing fine root longevity in forest ecosystems. Acta Phytoecologica Sinica, 2004, 28(4): 704-710. 梅莉, 王政权, 程云环, 等. 林木细根寿命及其影响因子研究进展. 植物生态学报, 2004, 28(4): 704-710. [52] Wang Z, Ding L, Wang J, et al . Effects of root diameter, branch order, root depth, season and warming on root longevity in an alpine meadow. Ecological Research, 2016, 31(5): 739-747. [53] van der Krift T A J, Berendse F. Root life spans of four grass species from habitats differing in nutrient availability. Functional Ecology, 2002, 16(2): 198-203. [54] Wu Y, Deng Y, Zhang J, et al . Root size and soil environments determine root lifespan: evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 2013, 28(3): 493-501. [55] van Vliet A J, Schwartz M D. Phenology and climate: the timing of life cycle events as indicators of climatic variability and change. International Journal of Climatology, 2002, 22(14): 1713-1714. [56] Milchunas D G, Morgan J A, Rosier A R, et al . Root dynamics and demography in shortgrass steppe under elevated CO 2 , and comments on minirhizotron methodology. Global Change Biology, 2005, 11(10): 1837-1855. [57] Sindhøj E, Hansson A C, Andrén O, et al . Root dynamics in a semi-natural grassland in relation to atmospheric carbon dioxide enrichment, soil water and shoot biomass. Plant & Soil, 2000, 223(1/2): 255-265. [58] Leadley P W, Niklaus P A, Stocker R, et al . A field study of the effects of elevated CO 2 on plant biomass and community structure in a calcareous grassland. Oecologia, 1999, 118(1): 39-49. [59] Volder A, Gifford R M, Evans J R. Effects of elevated atmospheric CO 2 , cutting frequency, and differential day/night atmospheric warming on root growth and turnover of Phalaris swards. Global Change Biology, 2007, 13(5): 1040-1052. [60] Arnone J A, Zaller J G, Spehn E M, et al . Dynamics of root systems in native grasslands: effects of elevated atmospheric CO 2 . New Phytologist, 2000, 147(1): 73-85. [61] Anderson L J, Derner J D, Polley H W, et al . Root responses along a subambient to elevated CO 2 gradient in a C 3 -C 4 grassland. Global Change Biology, 2010, 16(1): 454-468. [62] Phillips D L, Johnson M G, Tingey D T, et al . Effects of elevated CO 2 on fine root dynamics in a Mojave Desert community: a FACE study. Global Change Biology, 2006, 12(1): 61-73. [63] Wu Y, Jing Z, Deng Y, et al . Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 2014, 215(9): 1057-1066. [64] Kreyling J, Beierkuhnlein C, Pritsch K, et al . Recurrent soil freeze-thaw cycles enhance grassland productivity. New Phytologist, 2008, 177(4): 938-945. [65] Edwards E J, Benham D G, Marland L A, et al . Root production is determined by radiation flux in a temperate grassland community. Global Change Biology, 2004, 10(2): 209-227. [66] Ditomaso J M, Kyser G B, Pirosko C B. Effect of light and density on yellow starthistle ( Centaurea solstitialis ) root growth and soil moisture use. Weed Science, 2003, 51(3): 334-341. [67] Stewart A M, Frank D A. Short sampling intervals reveal very rapid root turnover in a temperate grassland. Oecologia, 2008, 157(3): 453-458. [68] Ren A T, Narkesi W, Lu W H, et al . Effect of the arbuscular mycorrhizal fungi on the dynamic characteristics of fine root growth and biomass of alfalfa. Acta Botanical Boreal-Occidentalia Sinica, 2014, 34(12): 2535-2543. 任爱天, 娜丽克斯·外里, 鲁为华, 等. AM真菌对紫花苜蓿细根生长及其生物量动态特征的影响. 西北植物学报, 2014, 34(12): 2535-2543. [69] Ren A T, Lu W H, Yang J J, et al . Seasonal change patterns in the production and mortality of fine roots in cotton and alfalfa. Acta Prataculturae Sinica, 2015, 24(6): 213-219. 任爱天, 鲁为华, 杨洁晶, 等. 棉花、苜蓿细根生长和死亡的季节变化. 草业学报, 2015, 24(6): 213-219. [70] Xun J J, Li J Y, Chen J W, et al . Relationships of fine root standing length of Caragana korshinskii seedlings with environmental factors. Chinese Journal of Plant Ecology, 2009, 33(4): 764-771. 荀俊杰, 李俊英, 陈建文, 等. 幼龄柠条细根现存量与环境因子的关系. 植物生态学报, 2009, 33(4): 764-771. [71] Huang G, Zhao X Y, Su Y G. Root dynamics of three grasses in Horqin sandy land of China. Journal of Plant Ecology, 2007, 31(6): 1161-1167. 黄刚, 赵学勇, 苏延桂. 科尔沁沙地3种草本植物根系生长动态. 植物生态学报, 2007, 31(6): 1161-1167. [72] Huang G, Zhao X Y, Huang Y X, et al . The root longevity of Artemisia halodendron inhabiting two sandy land habitats. Chinese Journal of Plant Ecology, 2009, 33(4): 755-763. 黄刚, 赵学勇, 黄迎新, 等. 两种生境条件下差不嘎蒿细根寿命. 植物生态学报, 2009, 33(4): 755-763. [73] Balogianni V G, Wilson S D, Vaness B M, et al . Different root and shoot responses to mowing and fertility in native and invaded grassland. Rangeland Ecology & Management, 2014, 67(1): 39-45. [74] Guo L B, Halliday M J, Siakimotu S J M, et al . Fine root production and litter input: Its effects on soil carbon. Plant & Soil, 2005, 272: 1-10. [75] Frank D A, Kuns M M, Guido D R. Consumer control of grassland plant production. Ecology, 2002, 83(3): 602-606. [76] Bonin C, Flores J, Lal R, et al . Root characteristics of perennial warm-season grasslands managed for grazing and biomass production. Agronomy, 2013, 3(3): 508-523. [77] Rytter R M, Rytter L. Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil. Plant & Soil, 2012, 350(1/2): 205-220. [78] Pärtel M, Wilson S D. Root and leaf production, mortality and longevity in response to soil heterogeneity. Functional Ecology, 2002, 15(6): 748-753. [79] Kristensen H L, Thorup-kristensen K. Root growth and nitrate uptake of three different catch crops in deep soil layers. Soil Science Society of America Journal, 2004, 68(2): 529-537. [80] Ziter C, MacDougall A S. Nutrients and defoliation increase soil carbon inputs in grassland. Ecology, 2013, 94(1): 106-116. [81] Padilla F M, de Dios Miranda J, Armas C, et al . Effects of changes in rainfall amount and pattern on root dynamics in an arid shrubland. Journal of Arid Environments, 2015, 114: 49-53. [82] Mann J J, Barney J N, Kyser G B, et al . Root system dynamics of Miscanthus×giganteus and Panicum virgatum in response to rainfed and irrigated conditions in California. Bioenergy Research, 2012, 6(2): 678-687. [83] Fu J M, Dernoeden P H. Creeping bentgrass putting green turf responses to two summer irrigation practices: rooting and soil temperature. Crop Science, 2009, 49(3): 1063-1070. [84] Majdi H, Damm E, Nylund J E. Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytologist, 2001, 150(1): 195-202. [85] Zhao A F. Morphology, distribution and dynamics of root systems of Artemisia halodendron and Caragana microphylla . Grassland of China, 1994, 3: 15-19. 赵爱芬. 差巴嘎蒿和小叶锦鸡儿根系分布及生长动态的初步研究. 中国草地学报, 1994, 3: 15-19. [86] Zhang Z S, Li X R, Zhang J G, et al . Root growth dynamics of Caragana korshinskii using minirhizotrons. Journal of Plant Ecology, 2006, 30(3): 457-464. 张志山, 李新荣, 张景光, 等. 用Minirhizotrons观测柠条根系生长动态. 植物生态学报, 2006, 30(3): 457-464. [87] Steinaker D F, Wilson S D. Belowground litter contributions to nitrogen cycling at a northern grassland-forest boundary. Ecology, 2005, 86(10): 2825-2833. [88] Solly E F, Schöning I, Boch S, et al . Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant & Soil, 2014, 382(1/2): 203-218. [89] Arnone III J A, Zaller J G. Earthworm effects on native grassland root system dynamics under natural and increased rainfall. Frontiers in Plant Science, 2014, 5(2): 152-159. [90] Steinaker D F, Wilson S D. Scale and density dependent relationships among roots, mycorrhizal fungi and collembola in grassland and forest. Oikos, 2008, 117(5): 703-710. [91] Aryal S K, Crow W T, Mcsorley R, et al . Effects of infection by Belonolaimus longicaudatus on rooting dynamics among St. Augustine grass and Bermudagrass genotypes. Journal of Nematology, 2015, 47(4): 332-331. [92] Ren A T. Effect of Arbuscular Mycorrhizal Fungi on Phosphorus Utilization and Turnover of Fine Root of Alfalfa[D]. Shihezi: Shihezi University, 2015. 任爱天. 丛枝菌根真菌(AMF)对苜蓿磷素利用效率和细根周转的影响[D]. 石河子: 石河子大学, 2015. [93] Treseder K K, Schimel J P, Garcia M O, et al . Slow turnover and production of fungal hyphae during a Californian dry season. Soil Biology and Biochemistry, 2010, 42(9): 1657-1660. [94] Vogt K A, Vogt D J, Bloomfield J. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant & Soil, 1998, 200(1): 71-89. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||