[1] Laloi C, Apel K, Danon A. Reactive oxygen signalling: the latest news. Current Opinion in Plant Biology, 2004, 7(3): 323-328. [2] Noctor G, Foyer C H. Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell, 2005, 17(7): 1866-1876. [3] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. [4] Mittler R, Vanderauwera S, Gollery M, et al . Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9(10): 490-498. [5] Qu Y N, Yang Z M. Effect of drought and heat stress on antioxidant metabolism of Agrostis stolonifera L. Journal of Shandong Agricultural University: Natural Science Edition, 2014, 45(4): 489-494. 曲亚楠, 杨志民. 高温与干旱胁迫对匍匐翦股颖抗氧化代谢的影响. 山东农业大学学报: 自然科学版, 2014, 45(4): 489-494. [6] Fan R P, Zhou Q, Zhou B, et al . Effects of salinization stress on growth and the antioxidant system of tall fescue. Acta Prataculturae Sinica, 2012, 21(1): 112-117. 樊瑞苹, 周琴, 周波, 等. 盐胁迫对高羊茅生长及抗氧化系统的影响. 草业学报, 2012, 21(1): 112-117. [7] Xu J, Yang J, Duan X G, et al . Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava ( Manihot esculenta Crantz). BMC Plant Biology, 2014, 14: 208. [8] Zhang H N, Li X J, Li C D, et al . Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in tobacco. Acta Agronomica Sinica, 2008, 34(8): 1403-1408. 张海娜, 李小娟, 李存东, 等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响. 作物学报, 2008, 34(8): 1403-1408. [9] Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004, 14(6): 787-799. [10] Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005, 17(6): 1658-1673. [11] Lee Y M, Friedman D J, Ayala F J. Superoxide dismutase: an evolutionary puzzle. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(3): 824. [12] Sunkar R. MicroRNAs with macro effects on plant stress responses. Seminars in Cell and Developmental Biology, 2010, 21(8): 805-811. [13] AbdelGhany S E, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry, 2008, 283(23): 15932-15945. [14] Jia X, Wang W X, Ren L, et al . Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana . Plant Molecular Biology, 2009, 71(1): 51-59. [15] Jia X, Ren L, Chen Q J, et al . UV-B-responsive microRNAs in Populus tremula . Journal of Plant Physiology, 2009, 166(18): 2046-2057. [16] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 2006, 18(8): 2051-2065. [17] Bonnet E, Wuyts J, Rouzé P, et al . Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(31): 11511-11516. [18] Beauclair L, Yu A, Bouché N. MicroRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant Journal, 2010, 62(3): 454-462. [19] Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001-2019. [20] Xu L X. Mechanism Involved in Drought Response and Post-drought Recovery of Kentucky Bluegrass[D]. Beijing: Beijing Forestry University, 2011. 许立新. 草地早熟禾适应干旱以及干旱后复水恢复机理研究[D]. 北京: 北京林业大学, 2011. [21] Shi P. The Drought Pretreatment Inducing the Physiological Mechanism of Drought Resistance and Differential Expression of Anti-oxidase Gene in Trifolium repens [D]. Sichuan: Sichuan Agricultural University, 2012. 石鹏. 干旱预处理诱导白三叶抗旱性的生理机制与抗氧化酶基因差异表达[D]. 四川: 四川农业大学, 2012. [22] Bueno P, Piqueras A, Kurepa J, et al . Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Science, 1998, 138(1): 27-34. [23] Rubio M C, Bustos-Sanmamed P, Clemente M R, et al . Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus . New Phytologist, 2009, 181(4): 851-859. [24] Xing X S. Characterization of Antioxidant Defense Genes KcCSD and KcTrxf from Kandelia candel Chloroplast under NaCl Stress[D]. Beijing: Beijing Forestry University, 2015. 荆晓姝. 秋茄叶绿体抗氧化防御基因 KcCSD 和 KcTrxf 的耐盐性功能分析[D]. 北京: 北京林业大学, 2015. [25] Yadav S K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 2010, 76(2): 167-179. [26] Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 1993, 51: 173-212. [27] Zhang Y X, Jin L, Feng S S, et al . Effects of Cd on activity and gene expression of antioxidant enzymes in hyperaccumulator Solanum nigrum L. Journal of Graduate University of Chinese Academy of Sciences, 2013, 30(1): 11-17. 张玉秀, 金玲, 冯珊珊, 等. 镉对镉超累积植物龙葵抗氧化酶活及基因表达的影响. 中国科学院大学学报, 2013, 30(1): 11-17. [28] Luo H, Li H, Zhang X, et al . Antioxidant responses and gene expression in perennial ryegrass ( Lolium perenne L.) under cadmium stress. Ecotoxicology, 2011, 20(4): 770-778. [29] Pawlak S, Firych A, Rymer K, et al . Cu, Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings. Acta Physiologiae Plantarum, 2009, 31(4): 741-747. [30] Hartwig A. Zink finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxidants and Redox Signaling, 2001, 3(4): 625-634. |