[1] Zhou C, Han L, Pislariu C, et al . From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiology, 2011, 157(3): 1483-1496. [2] Christ B, Hörtensteiner S. Mechanism and significance of chlorophyll breakdown. Journal of Plant Growth Regulation, 2014, 33(1): 4-20. [3] Park S, Yu J, Park J, et al . The senescence-induced staygreen protein regulates chlorophyll degradation. The Plant Cell Online, 2007, 19(5): 1649-1664. [4] Ren G, An K, Liao Y, et al . Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis . Plant Physiology, 2007, 144(3): 1429-1441. [5] Luo Z, Zhang J, Li J, et al . A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Physiologist, 2013, 198(2): 442-452. [6] Teng K, Chang Z H, Li X, et al . Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica ( ZjSGR ) caused chlorophyll degradation and accelerated senescence in Arabidopsis . Frontiers in Plant Science, 2016, (7): 1894. [7] Zhang L, Teng K, Xiao G Z, et al . Transformation of ZjADH gene into Arabidopsis thaliana and cold-tolerance analysis of transgenic plants. Acta Prataculturae Sinica, 2016, 25(11): 43-49. 张兰, 滕珂, 肖国增, 等. 日本结缕草 ZjADH 基因对拟南芥的转化及其耐寒性分析. 草业学报, 2016, 25(11): 43-49. [8] Zhang Y B, Sun X B, Fan B, et al . Cloning and expression of ZjNAC from Zoysia japonica . Acta Prataculturae Sinica, 2016, 25(4): 239-245. 张胤冰, 孙鑫博, 樊波, 等. 结缕草 ZjNAC 基因的克隆与表达分析. 草业学报, 2016, 25(4): 239-245. [9] Teng K, Tan P H, Xiao G Z, et al . Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP , caused salt sensitivity in Arabidopsis . Plant Cell Reports, 2017, 36(1): 179-191. [10] Wang S, Xie Z X, Xie L J, et al . Detection method of exogenous gene in transgenic tobacco by real-time fluorescence quantitative PCR. Journal of Southern Agriculture, 2015, 46(5): 745-749. 王盛, 谢芝勋, 谢丽基, 等. 转基因烟草中外源基因实时荧光定量PCR检测方法的建立. 南方农业学报, 2015, 46(5): 745-749. [11] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔ C T method. Methods, 2001, 25(4): 402-408. [12] Ren G, Zhou Q, Wu S, et al . Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis . Journal of Integrative Plant Biology, 2010, 52(5): 496-504. [13] Jibran R, Sullivan K L, Crowhurst R, et al . Staying green postharvest: How three mutations in the Arabidopsis chlorophyll b reductase gene NYC 1 delay degreening by distinct mechanisms. Journal of Experimental Botany, 2015, 66(21): 6849-6862. [14] Guo D P, Guo Y P, Zhao J P, et al . Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard ( Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Science, 2004, 168(1): 57-63. [15] Zhang K, Xia X, Zhang Y, et al . An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis . Plant Journal, 2012, 69(4): 667-678. [16] Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1996, 270(5244): 1986-1988. [17] Xu Y, Tian J, Gianfagna T, et al . Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass ( Agrostis stolonifera L.) under heat stress. Plant Growth Regulation, 2009, 57(3): 281-291. [18] Zhang M, Leng P, Zhang G, et al . Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase ( NCED ) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 2009, 166(12): 1241-1252. [19] Seo M, Koshiba T. The Arabidopsis aldehyde oxidase 3 ( AAO 3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences, 2000, 97(23): 12908-12913. |