[1] Yan R R, Xin X P, Zhang B H, et al . Influence of cattle grazing gradient on plant community characteristics in Hulunber meadow steppe. Chinese Journal of Grassland, 2010, 32(3): 62-67. 闫瑞瑞, 辛晓平, 张保辉, 等. 肉牛放牧梯度对呼伦贝尔草甸草原植物群落特征的影响. 中国草地学报, 2010, 32(3): 62-67. [2] Zheng W, Dong Q M, Li S Q, et al . Impact of grazing intensities on community biodiversity and production of Alpine grassland in Qinghai lake region. Acta Agrestia Sinica, 2012, 20(6): 1033-1038. 郑伟, 董全民, 李世雄, 等. 放牧强度对环青海湖高寒草原群落物种多样性和生产力的影响. 草地学报, 2012, 20(6): 1033-1038. [3] Wang M J, Han G D, Cui G W, et al . Effects of grazing intensity on the biodiversity and productivity of meadow steppe. Chinese Journal of Ecology, 2010, 29(5): 862-868. 王明君, 韩国栋, 崔国文, 等. 放牧强度对草甸草原生产力和多样性的影响. 生态学杂志, 2010, 29(5): 862-868. [4] Wang M J. Effects of Different Grazing Intensities on Grassland Ecosystem Heath of Leymus Chinensis Meadow Steppe[D]. Hohhot: Inner Mongolia Agricultural University, 2008. 王明君. 不同放牧强度对羊草草甸草原生态系统健康的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2008. [5] Li W H, Zheng S X, Bai Y F. Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 2014, 38(2): 178-187. 李文怀, 郑淑霞, 白永飞. 放牧强度和地形对内蒙古典型草原物种多度分布的影响. 植物生态学报, 2014, 38(2): 178-187. [6] Wang X T, Zhang S H, Chen D D, et al . The effects of natural grazing intensity on plant community and soil nutrients in alpine meadow. Acta Agrestia Sinica, 2010, 18(4): 510-516. 王向涛, 张世虎, 陈懂懂, 等. 不同放牧强度下高寒草甸植被特征和土壤养分变化研究. 草地学报, 2010, 18(4): 510-516. [7] Liu Y. Research on a Remote Sensed-based NPP Model and Environment Response for Semiarid Grassland Ecosystem[D]. Beijing: Institute of Remote Sensing Application Chinese Academy of Sciences, 2006. 刘岩. 半干旱草地NPP遥感模型和环境响应研究[D]. 北京: 中国科学院遥感应用研究所, 2006. [8] Liu A J, Han J G. The study of method about monitoring grazing intensity in Xilingol Rangeland using RS data. Chinese Journal of Grassland, 2007, 29(2): 317-320. 刘爱军, 韩建国. 利用遥感技术监测锡林郭勒天然草原利用强度方法初探. 中国草地学报, 2007, 29(2): 317-320. [9] Xie R, Wu X Q. Estimating grazing of Inner Mongolia Grassland by using remote sensing method. Acta Scientiarum Naturalium Universitatis Pekinensis: Natural Sciences Edition, 2014, 50(5): 919-924. 谢芮, 吴秀芹. 内蒙古草地放牧强度遥感估测. 北京大学学报: 自然科学版, 2014, 50(5): 919-924. [10] Moro G D, Halounova L. Haze removal for high-resolution satellite data: A case study. International Journal of Remote Sensing, 2007, 28(10): 2187-2205. [11] Liang S, Fang H, Chen M. Atmospheric correction of landsat ETM+ land surface imagery. I. methods. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(11): 2490-2498. [12] Liang S, Fang H, Morisette J T, et al . Atmospheric correction of landsat ETM+ land surface imagery: II. validation and applications. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(12): 1-10. [13] Planchon O, Darboux F. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena, 2002, 46(2): 159-176. [14] Zhang Y, Guindon B, Cihlar J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sensing of Environment, 2002, 82(2-3): 173-187. [15] Xiao Z, Liang S, Wang J, et al . Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(1): 209-223. [16] Xiao Z, Liang S, Sun R, et al . Estimating the fraction of absorbed photosynthetically active radiation from the MODIS data based GLASS leaf area index product. Remote Sensing of Environment, 2015, 171: 105-117. [17] Xiao Z, Wang T, Liang S, et al . Estimating the fractional vegetation cover from GLASS leaf area index product. Remote Sensing, 2016, 8(4): 337. [18] Ullah S, Si Y, Schlerf M, et al . Estimation of grassland biomass and nitrogen using MERIS data. International Journal of Applied Earth Observation & Geoinformation, 2012, 19(1): 196-204. [19] Xing Z R. Inversion of Leaf Area Index of Spring Wheat Based on Radiative Transfer Model and CHRIS Data[D]. Qingdao: Shandong University of Science and Technology, 2010. 邢著荣. 基于辐射传输模型和CHRIS数据反演春小麦LAI[D]. 青岛: 山东科技大学, 2010. [20] Zhang J H, Fu C B. A study on relationships between remote sensing information and plant photosynthetic parameters in estimating biomass model. Acta Geodaeticaet Cartographica Sinica, 1999, 28(2): 128-132. 张佳华, 符淙斌. 生物量估测模型中遥感信息与植被光合参数的关系研究. 测绘学报, 1999, 28(2): 128-132. [21] Ikeda H, Okamoto K, Fukuhara M. Estimation of aboveground grassland phytomass with a growth model using Landsat TM and climate data. International Journal of Remote Sensing, 1999, 20(20): 2283-2294. [22] Wu Lan T Y, Bao G, Wu Yun D L, et al . Hyper-spectral remote sensing estimates of aboveground biomass of grassland. Journal of Inner Mongolia Normal University: Natural Science Edition, 2015, (5): 660-666. 乌兰吐雅, 包刚, 乌云德吉, 等. 草地地上生物量高光谱遥感估算研究. 内蒙古师范大学学报: 自然科学汉文版, 2015, (5): 660-666. [23] Dai A H, Yu S X. Advances in the estimation of vegetation productivity and biomass with the aids of remote sensing. Chinese Journal of Ecology, 2004, 23(4): 92-98. 戴小华, 余世孝. 遥感技术支持下的植被生产力与生物量研究进展. 生态学杂志, 2004, 23(4): 92-98. [24] Lou X T, Zeng Y, Wu B F. Advances in the estimation of aboveground biomass of forest using remote sensing. Remote Sensing for Land & Resources, 2011, (1): 1-8. 娄雪婷, 曾源, 吴炳方. 森林地上生物量遥感估测研究进展. 国土资源遥感, 2011, (1): 1-8. [25] Ruimy A, Saugier B, Dedieu G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. Bulletin of the American Mathematical Society, 1959, 65(1959): 67. [26] Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chinese Journal of Plant Ecology, 2007, 31(3): 413-424. 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424. [27] White M A, Thornton P E, Running S W, et al . Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interactions, 2000, 4(3): 1-84. [28] Gong T T, Feng J C, Ma S, et al . Analysis of adaptation of productivity models and response of productivity to climate change on Hulunbuir grassland. Journal of The Central University for Nationalities: Natural Sciences Edition, 2016, 25(3): 78-84. 公婷婷, 冯金朝, 马帅, 等. 呼伦贝尔草地生产力模型适用性及对气候变化响应分析. 中央民族大学学报: 自然科学版, 2016, 25(3): 78-84. [29] Wang Y F, Wang S P. Influence of different stocking rates on belowground biomass in inner Mongolia steppe. Acta Agrestia Sinica, 1999, (3): 198-203. 王艳芬, 汪诗平. 不同放牧率对内蒙古典型草原地下生物量的影响. 草地学报, 1999, (3): 198-203. |