[1] Chu H B, Wei J H, Li T J, et al . Application of support vector regression for mid-and long-term runoff forecasting in “Yellow River headwater” region. Procedia Engineering, 2016, 154: 1251-1257. [2] Xie C W, Ding Y J, Liu S Y, et al . Comparison analysis of runoff change in the source regions of the Yangtze and Yellow Rivers. Journal of Glaciology & Geocryology, 2003, 25(4): 414-422. 谢昌卫, 丁永建, 刘时银, 等. 长江-黄河源寒区径流时空变化特征对比. 冰川冻土, 2003, 25(4): 414-422. [3] Yang Q, Wu J, Li Y, et al . Using the particle swarm optimization algorithm to calibrate the parameters relating to the turbulent flux in the surface layer in the source region of the Yellow River. Agricultural and Forest Meteorology, 2017, 232: 606-622. [4] White M A, Asner G P, Nemani R R, et al . Measuring fractional cover and leaf area index in arid ecosystems: digital camera, radiation transmittance, and laser altimetry methods. Remote Sensing of Environment, 2000, 74(1): 45-57. [5] Jiang C, Zhang L. Effect of ecological restoration and climate change on ecosystems: a case study in the three-rivers headwater region, China. Environmental Monitoring Assessment, 2016, 188(6): 1-20. [6] Hu G, Yu L, Dong Z, et al . Holocene aeolian activity in the headwater region of the Yellow River, Northeast Tibet Plateau, China: A first approach by using OSL-dating. Catena, 2017, 149: 150-157. [7] Guo W Q, Yang T B, Dai J G, et al . Vegetation cover changes and their relationship to climate variation in the source region of the Yellow River, China, 1990-2000. International Journal of Remote Sensing, 2008, 29(7): 2085-2103. [8] Jin H J, Luo D L, Wang S L, et al . Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sciences In Cold and Arid Regions, 2011, 3(4): 281-305. [9] Liu X D, Chen B D. Climatic warming in the Tibetan plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729-1742. [10] Chen J, Gu S, Shen M G, et al . Estimating aboveground biomass of grassland having a high canopy cover: an exploratory analysis of in situ hyperspectral data. International Journal of Remote Sensing, 2009, 30(24): 6497-6517. [11] Zhang B H, Zhang L, Xie D, et al . Application of synthetic NDVI time series blended from Landsat and MODIS data for grassland biomass estimation. Remote Sensing, 2015, 8(10): 1-21. [12] Liang T G, Yang S X, Feng Q S, et al . Multi-factor modeling of above-ground biomass in alpine grassland: a case study in the three-river headwaters region, China. Remote Sensing of Environment, 2016, 186: 164-172. [13] Lu D S. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 2006, 27(7): 1297-1328. [14] Gao T, Yang X C, Jin Y X, et al . Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China. PLoS One, 2013, 8(12): e83824. [15] Gu Y X, Wylie B K. Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations. Remote Sensing of Environment, 2015, 171: 291-298. [16] Qu C P, Guan D X, Wang A Z, et al . Comparison of grassland biomass estimation models based on MODIS data. Chinese Journal of Ecology, 2008, 27(11): 2028-2032. 渠翠平, 关德新, 王安志, 等. 基于MODIS数据的草地生物量估算模型比较. 生态学杂志, 2008, 27(11): 2028-2032. [17] Zhou Y T, Fu G, Shen Z X, et al . Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date. Acta Prataculturae Sinica, 2013, 22(1): 120-129. 周宇庭, 付刚, 沈振西, 等. 藏北典型高寒草甸地上生物量的遥感估算模型. 草业学报, 2013, 22(1): 120-129. [18] Craine J M, Nippert J B, Elmore A J, et al . Timing of climate variability and grassland productivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3401-3405. [19] Li F, Zeng Y, Li X S, et al . Remote sensing based monitoring of interannual variations in vegetation activity in China from 1982 to 2009. Science China Earth Sciences, 2014, 57(8): 1800-1806. [20] Becker-Reshef I, Vermote E, Lindeman M, et al . A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 2010, 114(6): 1312-1323. [21] Gu Y X, Wylie B K. Downscaling 250-m MODIS growing season NDVI based on multiple-date Landsat images and data mining approaches. Remote Sensing, 2015, 7(4): 3489-3506. [22] Gu Y X, Wylie B K, Bliss N B. Mapping grassland productivity with 250 m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA. Ecological Indicators, 2013, 24: 31-36. [23] Chen F, Weber K T, Gokhale B. Herbaceous biomass estimation from SPOT 5 imagery in semiarid rangelands of Idaho. GIScience & Remote Sensing, 2011, 48(2): 195-209. [24] Huete A R, Jackson R D, Post D F. Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 1985, 17(1): 37-53. [25] Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25(3): 295-309. [26] Xu B, Yang X C, Tao W G, et al . MODIS-based remote-sensing monitoring of the spatiotemporal patterns of China’s grassland vegetation growth. International Journal of Remote Sensing, 2013, 34(11): 3867-3878. [27] Porter T F, Chen C C, Long J A, et al . Estimating biomass on CRP pastureland: A comparison of remote sensing techniques. Biomass and Bioenergy, 2014, 66: 268-274. [28] Reddersen B, Fricke T, Wachendorf M. A multi-sensor approach for predicting biomass of extensively managed grassland. Computers and Electronics in Agriculture, 2014, 109: 247-260. [29] Ullah S, Si Y, Schlerf M, et al . Estimation of grassland biomass and nitrogen using MERIS data. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 196-204. [30] Saberioon M M, Amim M S M, Aimrun W, et al . Multispectral images tetracam agriculture digital to estimate nitrogen and grain yield of rice at different growth stages. Philippine Agriculturist, 2013, 96(1): 108-112. [31] Candiago S, Remondino F, De Giglio M, et al . Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 2015, 7(4): 4026-4047. [32] Fu G, Zhang X Z, Zhang Y J, et al . Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. Journal of Applied Remote Sensing, 2013, 7(1): 073505. [33] Thayn J B. Assessing vegetation cover on the date of satellite-derived start of spring. Remote Sensing Letters, 2012, 3(8): 721-728. [34] Yi S H, Zhou Z Y, Ren S L, et al . Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau. Environmental Research Letters, 2011, 6(4): 045403-045409. [35] Yi S H, Wang Z R, Xie X, et al . Estimation of fractional vegetation cover and its relation with permafrost in the upstream regions of Shule River Basin. Pratacultural Science, 2011, 28(3): 353-358. 宜树华, 王增如, 谢霞, 等. 高寒草地植被盖度估算及其与冻土的关系. 草业科学, 2011, 28(3): 353-358. [36] Saberioon M M, Amin M S M, Gholizadeh A. Estimation of nitrogen of rice in different growth stages using Tetracam agriculture digital camera[C]//11th International Conference on Precision Agriculture. Indianapolis, Indiana, United States: Proceedings of the International Conference on Precision Agriculture, 2012. [37] Swain K C, Thomson S J, Jayasuriya H P W. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the Asabe, 2010, 53(1): 21-27. [38] Swain K C, Zaman Q U, Swain K C, et al . Rice crop monitoring with unmanned helicopter remote sensing images[M]//Remote Sensing of Biomass-Principles and Applications. Rijeka, Croatia: InTech, 2012: 253-272. [39] Xiang H, Tian L. An autonomous helicopter system for aerial image collection[C]//2007 American Society of Agricultural and Biological Engineers. Minneapolis, Minnesota: American Society of Agricultural and Biological Engineers Editorial Committees, 2007. [40] Mazzetto F, Calcante A, Mena A. Comparing commercial optical sensors for crop monitoring tasks in precision viticulture. Journal of Agricultural Engineering, 2009, 40(1): 11-18. [41] Thomson S J, Smith L A, Hanks J E. An instrumentation platform and GPS position latency issues for remote sensing on agricultural aircraft. Transactions of the Asabe, 2007, 50(1): 13-22. [42] Aber J S, Aber S W, Buster L, et al . Challenge of infrared kite aerial photography: a digital update. Transactions of the Kansas Academy of Science, 2009, 112(1/2): 31-39. [43] La Puma I P, Philippi T E, Oberbauer S F. Relating NDVI to ecosystem CO 2 exchange patterns in response to season length and soil warming manipulations in arctic Alaska. Remote Sensing of Environment, 2007, 109(2): 225-236. [44] Fu G, Shen Z X, Zhong Z M. Initial response of normalized difference vegetation index, green normalized difference vegetation index and soil adjusted vegetation index to infrared warming in highland barley of the Tibet. Ecology & Environmental Sciences, 2015, 24(3): 365-371. 付刚, 沈振西, 钟志明. 西藏高原青稞三种植被指数对红外增温的初始响应. 生态环境学报, 2015, 24(3): 365-371. [45] Yang G J, Li C C, Yu H Y, et al . UAV based multi-load remote sensing technologies for wheat breeding information acquirement. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 184-190. 杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取. 农业工程学报, 2015, 31(21): 184-190. [46] Ren S L, Yi S H, Chen J J, et al . Comparisons of alpine grassland fractional vegetation cover estimation using different digital cameras and different image analysis methods. Pratacultural Science, 2014, 31(6): 1007-1013. 任世龙, 宜树华, 陈建军, 等. 基于不同数码相机和图像处理方法的高寒草地植被盖度估算的比较. 草业科学, 2014, 31(6): 1007-1013. [47] Ji Q M, Quiroz R, Leon-Velarde C. Dry matter availability assessment in Tibetan grasslands using ground-level remotely-sensed data. Acta Agrestia Sinica, 2008, 16(1): 34-38. 姬秋梅, Quiroz Robeto, Leon-Velarde Calos. 应用数字照相机研究西藏草地产草量. 草地学报, 2008, 16(1): 34-38. [48] Yang P W, Fu G, Li Y L, et al . Aboveground biomass assessment in the northern Tibet Plateau using ground-level remotely-sensed data. Pratacultural Science, 2014, 31(7): 1211-1217. 杨鹏万, 付刚, 李云龙, 等. 多光谱相机估算藏北高寒草甸地上生物量. 草业科学, 2014, 31(7): 1211-1217. [49] Chen L Q, Liu C M, Yang S T, et al . Reproduction of precipitation in the source regions of Yellow River with remote sensing. China Environmental Science, 2006, 26(S1): 87-91. 陈利群, 刘昌明, 杨胜天, 等. 黄河源区降水遥感反演. 中国环境科学, 2006, 26(S1): 87-91. [50] Song X, Yang G X, Yan C Z, et al . Driving forces behind land use and cover change in the Qinghai-Tibetan Plateau: a case study of the source region of the Yellow River, Qinghai Province, China. Environmental Earth Sciences, 2009, 59(4): 793-801. [51] Li Q, Yang M X, Wan G N, et al . Spatial and temporal precipitation variability in the source region of the Yellow River. Environmental Earth Sciences, 2016, 75: 1-14. [52] Yan Z L, Zhou H K, Liu W, et al . Preliminary discuss on grassland degradation in the source region of Yangtze and Yellow Rivers. Grassland of China, 2003, 25(1): 73-78. 严作良, 周华坤, 刘伟, 等. 江河源区草地退化状况及成因. 中国草地学报, 2003, 25(1): 73-78. [53] Meng B P, Chen S Y, Cui X, et al . The accuracy of grassland vegetation biomass estimated model based on multi-source remote sensing data-As a case of experimental area in Sangke grassland in Xiahe County. Pratacultural Science, 2015, 32(11): 1730-1739. 孟宝平, 陈思宇, 崔霞, 等. 基于多源遥感数据的高寒草地生物量反演模型精度——以夏河县桑科草原试验区为例. 草业科学, 2015, 32(11): 1730-1739. [54] Tucker C J, Justice C O, Prince S D. Monitoring the grasslands of the Sahel 1984-1985. International Journal of Remote Sensing, 1986, 7(11): 1571-1581. [55] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58(3): 289-298. [56] Song Y, Ma M, Veroustraete F. Comparison and conversion of AVHRR GIMMS and SPOT vegetation NDVI data in China. International Journal of Remote Sensing, 2010, 31(9): 2377-2392. [57] Feng Q S, Gao X H. Application of excel in the experiment teaching of leave-one-out cross validation. Experimental Science and Technology, 2015, 13(2): 49-51. 冯琦胜, 高新华. Excel在留一法交叉验证实验教学中的作用. 实验科学与技术, 2015, 13(2): 49-51. [58] Feng Q S, Gao X H, Huang X D, et al . Remote sensing dynamic monitoring of grass growth in Qinghai-Tibet Plateau from 2001 to 2010. Journal of Lanzhou University: Natural Sciences, 2011, 47(4): 75-81. 冯琦胜, 高新华, 黄晓东, 等. 2001-2010年青藏高原草地生长状况遥感动态监测. 兰州大学学报: 自然科学版, 2011, 47(4): 75-81. [59] Gao Z H, Wei H D. Methods for subtracting vegetation information using vegetation index (VI) from TM images. Journal of Arid Land Resources & Environment, 1998, 12(3): 98-104. 高志海, 魏怀东. TM影像VI提取植被信息技术研究. 干旱区资源与环境, 1998, 12(3): 98-104. [60] Moges S M, Raun W R, Mullen R W, et al . Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield. Journal of Plant Nutrition, 2005, 27(8): 1431-1441. [61] Shanahan J F, Schepers J S, Francis D D, et al . Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal, 2001, 93(3): 583-589. [62] Zhang W, Chen G, Long G Q, et al . Study on color evaluation of clean culture turf by hyperspectral parameter. Grassland & Turf, 2007, (5): 6-10. 张文, 陈功, 龙光强, 等. 利用高光谱参数评价单播草坪色泽的研究. 草原与草坪, 2007, (5): 6-10. [63] Curran P J, Williamson H D. Sample size for ground and remotely sensed data. Remote Sensing of Environment, 1986, 20(1): 31-41. |