[1] Sun H L, Zheng D, Yao T D, et al . Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Journal of Geographical Sciences, 2012, 67(1): 3-12. 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12. [2] Zhou X R, Guo Z G, Guo X H. The role of plateau pika and plateau zokor in alpine meadow. Pratacultural Science, 2010, 27(5): 38-44. 周雪荣, 郭正刚, 郭兴华. 高原鼠兔和高原鼢鼠在高寒草甸中的作用. 草业科学, 2010, 27(5): 38-44. [3] Fan N C, Wang Q Y, Zhou W Y, et al . The relationship between plateau zokor populations and vegetation damage. Essays of Alpine Meadow Ecosystem International Academic Discussion. Beijing: Science Press, 1988: 109-115. 樊乃昌, 王权业, 周文扬, 等. 高原鼢鼠种群数量与植被破坏程度的关系. 高寒草甸生态系统国际学术讨论文集. 北京: 科学出版社, 1988: 109-115. [4] Smith A T, Foggin J M. The plateau pika ( Ochotona curzoniae ) is a keystone species for biodiversity on the Tibetan plateau. Animal Conservation, 1999, (2): 235-240. [5] Golley F B, Petrusewicz K, Ryszkowski L. Smallmam-mals: their productivity and population dynamics. International Biological Programme. England: Cambridge University Press, 1975: 1-23. [6] Jones C G, Lawton J H, Shachak M. Organisms as ecosystem engineers. Oikos, 1994, 69: 373-386. [7] Zhang F M, Ge S. Data analysis in population genetics I. analysis of RAPD data with AMOVA. Biodiversity Science, 2002, 10(4): 438-444. 张富民, 葛颂. 种群遗传学研究中的数据处理方法Ⅰ.RAPD数据的AMOVA分析. 生物多样性, 2002, 10(4): 438-444. [8] Chen L Z. Biodiversity Situation and It’s Conservation Measure in China. Beijing: Science Press, 1993: 99-113. 陈灵芝. 中国的生物多样性现状及其保护对策. 北京: 科学出版社, 1993: 99-113. [9] Hedrick P W. Genetics of Populations. 2nd ed. Massachusetts: Jones and Bartlett Publishers, 2000: 1-61. [10] Zhang Y M, Liu J K. Effects of plateau zokor ( Myospalax fontanierii ) on plant community and soil in an alpine meadow. Journal of Mammalogy, 2003, 84: 644-651. [11] Tang L Z, Yu L, Wang J J, et al . Gene flows of eospalax baileyi geographical populations. Journal of Anhui Agricultural Sciences, 2010, (10): 5123-5124. 唐利洲, 于龙, 王俊杰, 等. 高原鼢鼠种群间基因流研究. 安徽农业科学, 2010, (10): 5123-5124. [12] Cai Z Y, Zhang T Z, Ci H X, et al . Mitochondrial phylogeography and genetic diversity of plateau zokor ( Myospalax baileyi ). Acta Theriologica Sinica, 2007, 27(2): 130-137. 蔡振媛, 张同作, 慈海鑫, 等. 高原鼢鼠线粒体谱系地理学和遗传多样性. 兽类学报, 2007, 27(2): 130-137. [13] Mora M S, Mapelli F J, Gaggiotti O E, et al . Dispersal and population structure at different spatial scales in the subterranean rodent ( Ctenomys australis ). BMC Genetics, 2010, 11(9): 1-14. [14] Su J H, Ji W H, Howitt R, et al . Novel microsatellite markers obtained from Gansu zokor ( Eospalax cansus ) and cross-species amplification in Plateau zokor ( Eospalax baileyi ). Biochemical Systematics and Ecology, 2014, 57: 128-132. [15] Yeh F C, Boyle T. POPGENE version 1.3-Microsoft Windows-based freeware for population genetic analysis. [2016-06-24]. https://sites.ualberta.ca/~fyeh/popgene.pdf. html. [16] Piggott M P, Banks S C, Taylor A C. Population structure of brush-tailed rock-wallaby ( Petrogale penicillata ) colonies inferred from analysis of faecal DNA. Molecular Ecology, 2006, 15(1): 93-105. [17] Favre L, Balloux F, Goudet J, et al . Female-biased dispersal in the monogamous mammal Crocidura russula : evidence from field data and microsatellite patterns. Biological Sciences, 1997, 264(1): 127-132. [18] Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 1980, 32(3): 314-331. [19] Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164(4): 1567-1587. [20] Rosenberg N A. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 2004, 4: 137-138. [21] Rossiter S J, Benda P, Dietz C, et al . Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation. Molecular Ecology, 2007, 16(22): 4699-4714. [22] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. [23] Wright. Evolution and the Genetics of Populations. America: University of Chicago Press, 1978. [24] Jie X M, Yun J F. Genetic diversity and detective methods of plant. Grassland of China, 2000, (6): 51-59. 解新明, 云锦凤. 植物遗传多样性及其检测方法. 中国草地, 2000, (6): 51-59. [25] Masatoshi N, Sudhir K. Molecular Evolution and Phylogeny. Lv B Z, Zhong Y, Gao L P, translate. Beijing: Higher Education Press, 2002: 204-207. Masatoshi N, Sudhir K. 分子进化与系统发育. 吕宝忠, 钟扬, 高莉萍, 译. 北京: 高等教育出版社, 2002: 204-207. [26] Su J H. Study on Population Genetic Structure of Two Kinds of Typical Native Animals in the Eastern Qinghai-Tibetan Plateau. Lanzhou: Agricultural University, 2014. 苏军虎. 青藏高原东缘两类典型土著动物种群遗传结构分析. 兰州: 甘肃农业大学, 2014. [27] Wei W H, Wang Q Y, Zhou W Y, et al . The population dynamics and dispersal of plateau zokor after removing. Acta Theriologica Sinica, 1997, 17(1): 53-61. 魏万红, 王权业, 周文扬, 等. 灭鼠干扰后高原鼢鼠的种群动态与扩散. 兽类学报, 1997, 17(1): 53-61. [28] Duffy J E. Genetic population structure in two tropical sponge-dwelling shrimps that differ in dispersal potential. Marine Biology, 1993, 116(3): 459-470. [29] Duran S, Palacín C, Becerro M A, et al . Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea ). Molecular Ecology, 2004, 13(11): 3317-3328. [30] Duran S, Pascual M, Estoup A, et al . Strong population structure in the marine sponge Crambe crambe ( Poecilosclerida ) as revealed by microsatellite markers. Molecular Ecology, 2004, 13(3): 511-522. [31] Quan Y C, Li D Y, Cao D C, et al . Population genetic variation and structure analysis on five populations of mirror carp Cyprinus carpio L. using microsatellites. Hereditas, 2006, 28(12): 1541-1548. 全迎春, 李大宇, 曹鼎辰, 等. 微卫星DNA标记探讨镜鲤的种群结构与遗传变异. 遗传, 2006, 28(12): 1541-1548. [32] Hewitt G M. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2004, 359: 183-195. [33] Mora M S, Cutrera A P, Lessa E P, et al . Phylogeography and population genetic structure of the Talas tuco-tuco ( Ctenomys talarum ): integrating demographic and habitat histories. Journal of Mammalogy, 2013, 94(2): 459-476. [34] Van Daele P, Verheyen E, Corkery I, et al . Trends in skull morphology in relation to differential molecular evolution in African mole-rats of the chromosomally hyperdivers genus Fukomys (Bathyergidae, Rodentia) from the Zambezian region. Italian Journal of Mammalogy, 2006, (Suppl 1): 143. [35] Brown G G, Gadaleta G, Pepe G, et al . Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. Journal of Molecular Biology, 1986, 192(3): 503-511. [36] Jianping S U. Energy cost of foraging and optimal foraging in the fossorial rodent ( Myospalax bailey I). Acta Theriologica Sinica, 1992, 2: 4. [37] Huenneke L F. Ecological implications of genetic variation in plant populations//Falk D A, Holsinger K E. Genetics and Conservation of Rare Plants. New York: Oxford University Press, 1991: 31-44. |