[1] Koch H, Lücker S, Albertsen M, et al.Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proceedings of the National Academy of Sciences, 2015, 112(36): 11371-11376. [2] Bock E, Wagner M.Oxidation of inorganic nitrogen compounds as an energy source//The prokaryotes. New York: Springer, 2006: 457-495. [3] Könneke M, Bernhard A E, José R, et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058): 543-546. [4] Costa E, Pérez J, Kreft J U.Why is metabolic labour divided in nitrification. Trends in Microbiology, 2006, 14(5): 213. [5] Daims H, Lebedeva E V, Pjevac P, et al.Complete nitrification by Nitrospira bacteria. Nature, 2015, 528(7583): 504. [6] van Kessel M A, Speth D R, Albertsen M, et al. Complete nitrification by a single microorganism. Nature, 2015, 528(7583): 555-559. [7] Pinto A J, Marcus D N, Ijaz U Z, et al.Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. Msphere, (2015-12-30) [2018-03-14]. http://dx.doi.org/10.1128/mSphere.00054-15. [8] Pjevac P, Schauberger C, Poghosyan L, et al.AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Frontiers in Microbiology, 2017, 8: 1508. [9] Kuypers M M M. Microbiology: A fight for scraps of ammonia. Nature, 2017, 549(7671): 162-163. [10] Martens-Habbena W, Berube P M, Urakawa H, et al.Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature, 2009, 461(7266): 976-979. [11] Kits K D, Sedlacek C J, Lebedeva E V, et al.Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 2017, 549(7671): 269-272. [12] Jung M Y, Park S J, Min D, et al.Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I. 1a from an agricultural soil. Applied and Environmental Microbiology, 2011, 77(24): 8635-8647. [13] Park B J, Park S J, Yoon D N, et al.Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Applied and Environmental Microbiology, 2010, 76(22): 7575-7587. [14] Bollmann A, Schmidt I, Saunders A M, et al.Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Applied and Environmental Microbiology, 2005, 71(3): 1276-1282. [15] Bollmann A, Bär-Gilissen M J, Laanbroek H J. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 2002, 68(10): 4751-4757. [16] Koops H P, Pommerening-Röser A.Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology, 2001, 37(1): 1-9. [17] Jiang Q Q, Bakken L R.Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiology Ecology, 1999, 30(2): 171-186. [18] Stehr G, Böttcher B, Dittberner P, et al.The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiology Ecology, 1995, 17(3): 177-186. [19] Suwa Y, Imamura Y, Suzuki T, et al.Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Research, 1994, 28(7): 1523-1532. [20] Groeneweg J, Sellner B, Tappe W.Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: effects of pH and temperature. Water Research, 1994, 28(12): 2561-2566. [21] Francis C A, Roberts K J, Beman J M, et al.Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683-14688. [22] Palomo A, Pedersen A G, Fowler S J, et al.Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira . BioRxiv, (2017-05-16)[2018-03-14].http://dx.doi.org/10.1101/138586. [23] Mills J, Greenwood J A, Wyborn N R, et al.An outer-membrane porin inducible by short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus. Microbiology, 1997, 143(7): 2373-2379. [24] Koch H, Galushko A, Albertsen M, et al.Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science, 2014, 345(6200): 1052-1054. [25] Palatinszky M, Herbold C, Jehmlich N, et al.Cyanate as an energy source for nitrifiers. Nature, 2015, 524(7563): 105-108. [26] Ouellet H, Ranguelova K, Labarre M, et al.Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: evidence for peroxidatic activity and formation of protein-based radicals. Journal of Biological Chemistry, 2007, 282(10): 7491. [27] Torge R, Comandini A, Catacchio B, et al.Peroxidase-like activity of Thermobifida fusca hemoglobin: The oxidation of dibenzylbutanolide. Journal of Molecular Catalysis B: Enzymatic, 2009, 61(3): 303-308. [28] Kageyama H, Tripathi K, Rai A K, et al.An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Applied and Environmental Microbiology, 2011, 77(15): 5178-5183. [29] Shen Y C, Hu Y N, Shaw G C.Expressions of alkaline phosphatase genes during phosphate starvation are under positive influences of multiple cell wall hydrolase genes in Bacillus subtilis. The Journal of General and Applied Microbiology, 2016, 62(2): 106-109. [30] Palomo A, Fowler S J, Gülay A, et al.Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp. The ISME Journal, 2016, 10(11): 2569-2581. [31] Gao J F, Fan X Y, Pan K L, et al.Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter. Scientific Reports, 2016, 6: 38785. [32] Bartelme R P, McLellan S L, Newton R J. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira. Frontiers in Microbiology, 2017, 8: 101. |