Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (10): 1-14.DOI: 10.11686/cyxb2022488
Zheng-yong XU1(), Bin SUN2,3(), Wang-fei ZHANG1, Yi-fu LI2,3, Zi-yu YAN2,3, Wei YUE2,3, Si-han TENG2,3,4
Received:
2022-12-13
Revised:
2023-01-16
Online:
2023-10-20
Published:
2023-07-26
Contact:
Bin SUN
Zheng-yong XU, Bin SUN, Wang-fei ZHANG, Yi-fu LI, Zi-yu YAN, Wei YUE, Si-han TENG. An evaluation of a remote sensing method based on optimized triangular vegetation index (TVI) for aboveground shrub biomass estimation in shrub-encroached grassland[J]. Acta Prataculturae Sinica, 2023, 32(10): 1-14.
TVI组合Triangular vegetation index (TVI) combination | 计算公式Formula |
---|---|
绿、红和红边组合Green, red and red-edge combination | |
绿、红和近红组合Green, red and near-infrared combination | |
绿、红边和近红组合Green, red-edge and near-infrared combination |
Table 1 Formula for calculating TVI
TVI组合Triangular vegetation index (TVI) combination | 计算公式Formula |
---|---|
绿、红和红边组合Green, red and red-edge combination | |
绿、红和近红组合Green, red and near-infrared combination | |
绿、红边和近红组合Green, red-edge and near-infrared combination |
植被指数 Vegetation index | 计算公式 Formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized vegetation index (NDVI) | [ | |
差值植被指数Difference vegetation index (DVI) | [ | |
比值植被指数Rational vegetation index (RVI) | [ | |
增强型植被指数Enhanced vegetation index (EVI) | [ | |
绿色归一化植被指数Green normalized difference vegetative index (GNDVI) | [ | |
绿色叶绿素指数Green chlorophyll index (CIgreen) | [ | |
归一化差异红外指数Normalized difference infrared index (NDII) | [ | |
优化土壤调节植被指数Optimized soil adjusted vegetation index (OSAVI) | [ | |
土壤调节植被指数Soil adjusted vegetation index (SAVI) | [ | |
修正土壤调节植被指数Modified soil adjusted vegetation index (MSAVI) | [ | |
绿红植被指数Green red vegetation index (GRVI) | [ | |
全球植被湿度指数Global vegetation moisture index (GVMI) | [ |
Table 2 Vegetation index formula
植被指数 Vegetation index | 计算公式 Formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized vegetation index (NDVI) | [ | |
差值植被指数Difference vegetation index (DVI) | [ | |
比值植被指数Rational vegetation index (RVI) | [ | |
增强型植被指数Enhanced vegetation index (EVI) | [ | |
绿色归一化植被指数Green normalized difference vegetative index (GNDVI) | [ | |
绿色叶绿素指数Green chlorophyll index (CIgreen) | [ | |
归一化差异红外指数Normalized difference infrared index (NDII) | [ | |
优化土壤调节植被指数Optimized soil adjusted vegetation index (OSAVI) | [ | |
土壤调节植被指数Soil adjusted vegetation index (SAVI) | [ | |
修正土壤调节植被指数Modified soil adjusted vegetation index (MSAVI) | [ | |
绿红植被指数Green red vegetation index (GRVI) | [ | |
全球植被湿度指数Global vegetation moisture index (GVMI) | [ |
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 7.62 | 沙质地表,有零星天然草本植被覆盖。Sandy surface with scattered natural herbaceous vegetation. |
样区2 Sample area 2 | 26×26 | 29.83 | 沙质地表,稀疏天然草本植被覆盖。Sandy surface, sparsely covered by natural herbaceous vegetation. |
样区3 Sample area 3 | 26×26 | 35.76 | 不均匀天然草本植被覆盖,有少量裸露地表。Uneven natural herb vegetation coverage, with a small amount of bare ground. |
样区4 Sample area 4 | 26×26 | 51.52 | 3/4均匀天然草本植被覆盖,1/4不均匀少量裸露地表覆盖。3/4 uniform natural herbaceous vegetation coverage, 1/4 uneven small amount of bare ground coverage. |
样区5 Sample area 5 | 26×26 | 69.22 | 人工草本植被覆盖为主,分布不均匀,且有大量空隙。Artificial herbaceous vegetation is mainly covered, with uneven distribution and a large number of gaps. |
样区6 Sample area 6 | 26×26 | 84.87 | 人工草本植被覆盖为主,且有少量不均匀空隙。Artificial herbaceous vegetation is mainly covered with a small amount of uneven gaps. |
Table 3 Characteristics of vegetation and herbaceous sample area size
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 7.62 | 沙质地表,有零星天然草本植被覆盖。Sandy surface with scattered natural herbaceous vegetation. |
样区2 Sample area 2 | 26×26 | 29.83 | 沙质地表,稀疏天然草本植被覆盖。Sandy surface, sparsely covered by natural herbaceous vegetation. |
样区3 Sample area 3 | 26×26 | 35.76 | 不均匀天然草本植被覆盖,有少量裸露地表。Uneven natural herb vegetation coverage, with a small amount of bare ground. |
样区4 Sample area 4 | 26×26 | 51.52 | 3/4均匀天然草本植被覆盖,1/4不均匀少量裸露地表覆盖。3/4 uniform natural herbaceous vegetation coverage, 1/4 uneven small amount of bare ground coverage. |
样区5 Sample area 5 | 26×26 | 69.22 | 人工草本植被覆盖为主,分布不均匀,且有大量空隙。Artificial herbaceous vegetation is mainly covered, with uneven distribution and a large number of gaps. |
样区6 Sample area 6 | 26×26 | 84.87 | 人工草本植被覆盖为主,且有少量不均匀空隙。Artificial herbaceous vegetation is mainly covered with a small amount of uneven gaps. |
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 6.04 | 沙质地表,有零星灌丛覆盖。Sandy surface, covered by scattered shrubs. |
样区2 Sample area 2 | 26×26 | 12.58 | 沙质地表,少量不均匀灌丛覆盖。Sandy surface, covered by a small amount of uneven shrubs. |
样区3 Sample area 3 | 26×26 | 15.58 | 1/2沙质地表,1/2不均匀灌丛覆盖。1/2 sandy surface, 1/2 uneven shrub coverage. |
样区4 Sample area 4 | 26×26 | 19.42 | 3/4不均匀灌丛覆盖,1/4不均匀灌草混合覆盖。3/4 uneven shrub coverage, 1/4 uneven shrub grass mixed coverage. |
样区5 Sample area 5 | 26×26 | 24.92 | 分布较均匀的灌丛覆盖为主,掺杂少量草本植被覆盖,且有大量空隙。It is mainly covered by bushes with relatively uniform distribution, mixed with a small amount of herbaceous vegetation, and has a large number of gaps. |
样区6 Sample area 6 | 26×26 | 33.09 | 分布较均匀的灌草混合分布,且有少量空隙。Evenly distributed shrubs and grasses are mixed with a small amount of gaps. |
Table 4 Characteristics of vegetation and shrubs sample area size
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 6.04 | 沙质地表,有零星灌丛覆盖。Sandy surface, covered by scattered shrubs. |
样区2 Sample area 2 | 26×26 | 12.58 | 沙质地表,少量不均匀灌丛覆盖。Sandy surface, covered by a small amount of uneven shrubs. |
样区3 Sample area 3 | 26×26 | 15.58 | 1/2沙质地表,1/2不均匀灌丛覆盖。1/2 sandy surface, 1/2 uneven shrub coverage. |
样区4 Sample area 4 | 26×26 | 19.42 | 3/4不均匀灌丛覆盖,1/4不均匀灌草混合覆盖。3/4 uneven shrub coverage, 1/4 uneven shrub grass mixed coverage. |
样区5 Sample area 5 | 26×26 | 24.92 | 分布较均匀的灌丛覆盖为主,掺杂少量草本植被覆盖,且有大量空隙。It is mainly covered by bushes with relatively uniform distribution, mixed with a small amount of herbaceous vegetation, and has a large number of gaps. |
样区6 Sample area 6 | 26×26 | 33.09 | 分布较均匀的灌草混合分布,且有少量空隙。Evenly distributed shrubs and grasses are mixed with a small amount of gaps. |
TVI组合 TVI combination | 描述 Description | 决定系数Coefficient of determination (R2) | |
---|---|---|---|
草本植被Herbaceous vegetation | 灌丛植被Shrub vegetation | ||
绿、红和红边组合 Green, red and red-edge combination | TVI ( | 0.376 | 0.175 |
TVI ( | 0.571 | 0.088 | |
TVI ( | 0.423 | 0.088 | |
绿、红和近红组合 Green, red and near-infrared combination | TVI ( | 0.616 | 0.053 |
TVI ( | 0.468 | 0.098 | |
绿、红边和近红组合 Green, red-edge and near-infrared combination | TVI ( | 0.623 | 0.029 |
TVI ( | 0.684 | 0.032 | |
TVI ( | 0.048 | 0.299 | |
TVI ( | 0.033 | 0.042 | |
TVI ( | 0.327 | 0.368 | |
TVI ( | 0.316 | 0.054 |
Table 5 The aboveground biomass of herbaceous vegetation and shrub vegetation was linearly fitted with different TVI combinations
TVI组合 TVI combination | 描述 Description | 决定系数Coefficient of determination (R2) | |
---|---|---|---|
草本植被Herbaceous vegetation | 灌丛植被Shrub vegetation | ||
绿、红和红边组合 Green, red and red-edge combination | TVI ( | 0.376 | 0.175 |
TVI ( | 0.571 | 0.088 | |
TVI ( | 0.423 | 0.088 | |
绿、红和近红组合 Green, red and near-infrared combination | TVI ( | 0.616 | 0.053 |
TVI ( | 0.468 | 0.098 | |
绿、红边和近红组合 Green, red-edge and near-infrared combination | TVI ( | 0.623 | 0.029 |
TVI ( | 0.684 | 0.032 | |
TVI ( | 0.048 | 0.299 | |
TVI ( | 0.033 | 0.042 | |
TVI ( | 0.327 | 0.368 | |
TVI ( | 0.316 | 0.054 |
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 178.964 | 0.000 | 0.773 | 41.083 | |
绿色叶绿素指数CIgreen | 48.036 | 0.000 | 0.461 | 64.608 | |
差值植被指数DVI | 41.271 | 0.000 | 0.419 | 65.801 | |
增强型植被指数EVI | 149.495 | 0.000 | 0.736 | 44.165 | |
绿色归一化植被指数GNDVI | 42.791 | 0.000 | 0.422 | 65.690 | |
绿红植被指数GRVI | 99.978 | 0.000 | 0.648 | 51.230 | |
修正土壤调节植被指数MSAVI | 58.020 | 0.000 | 0.514 | 60.252 | |
归一化差异红外指数NDII | 94.345 | 0.000 | 0.643 | 51.772 | |
归一化植被指数NDVI | 68.197 | 0.000 | 0.551 | 57.870 | |
比值植被指数RVI | 87.103 | 0.000 | 0.609 | 53.961 | |
土壤调节植被指数SAVI | 61.084 | 0.000 | 0.523 | 59.659 | |
全球植被湿度指数GVMI | 94.346 | 0.000 | 0.641 | 51.786 | |
优化土壤调节植被指数OSAVI | 68.197 | 0.000 | 0.552 | 57.875 |
Table 6 Cross validation result of different index models in herbaceous
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 178.964 | 0.000 | 0.773 | 41.083 | |
绿色叶绿素指数CIgreen | 48.036 | 0.000 | 0.461 | 64.608 | |
差值植被指数DVI | 41.271 | 0.000 | 0.419 | 65.801 | |
增强型植被指数EVI | 149.495 | 0.000 | 0.736 | 44.165 | |
绿色归一化植被指数GNDVI | 42.791 | 0.000 | 0.422 | 65.690 | |
绿红植被指数GRVI | 99.978 | 0.000 | 0.648 | 51.230 | |
修正土壤调节植被指数MSAVI | 58.020 | 0.000 | 0.514 | 60.252 | |
归一化差异红外指数NDII | 94.345 | 0.000 | 0.643 | 51.772 | |
归一化植被指数NDVI | 68.197 | 0.000 | 0.551 | 57.870 | |
比值植被指数RVI | 87.103 | 0.000 | 0.609 | 53.961 | |
土壤调节植被指数SAVI | 61.084 | 0.000 | 0.523 | 59.659 | |
全球植被湿度指数GVMI | 94.346 | 0.000 | 0.641 | 51.786 | |
优化土壤调节植被指数OSAVI | 68.197 | 0.000 | 0.552 | 57.875 |
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 14.238 | 0.001 | 0.338 | 69.912 | |
绿色叶绿素指数CIgreen | 3.561 | 0.074 | 0.052 | 86.587 | |
差值植被指数DVI | 2.566 | 0.125 | 0.011 | 87.775 | |
增强型植被指数EVI | 2.321 | 0.143 | 0.009 | 88.182 | |
绿色归一化植被指数GNDVI | 3.722 | 0.068 | 0.054 | 85.422 | |
绿红植被指数GRVI | 1.569 | 0.225 | 0.008 | 89.673 | |
修正土壤调节植被指数MSAVI | 2.818 | 0.109 | 0.019 | 87.235 | |
归一化差异红外指数NDII | 2.655 | 0.119 | 0.016 | 87.195 | |
归一化植被指数NDVI | 2.956 | 0.101 | 0.028 | 86.781 | |
比值植被指数RVI | 2.946 | 0.102 | 0.036 | 87.853 | |
土壤调节植被指数SAVI | 2.985 | 0.099 | 0.028 | 86.735 | |
全球植被湿度指数GVMI | 2.655 | 0.119 | 0.015 | 87.197 | |
优化土壤调节植被指数OSAVI | 2.959 | 0.101 | 0.029 | 86.780 |
Table 7 Cross validation result of different index models in shrubs
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 14.238 | 0.001 | 0.338 | 69.912 | |
绿色叶绿素指数CIgreen | 3.561 | 0.074 | 0.052 | 86.587 | |
差值植被指数DVI | 2.566 | 0.125 | 0.011 | 87.775 | |
增强型植被指数EVI | 2.321 | 0.143 | 0.009 | 88.182 | |
绿色归一化植被指数GNDVI | 3.722 | 0.068 | 0.054 | 85.422 | |
绿红植被指数GRVI | 1.569 | 0.225 | 0.008 | 89.673 | |
修正土壤调节植被指数MSAVI | 2.818 | 0.109 | 0.019 | 87.235 | |
归一化差异红外指数NDII | 2.655 | 0.119 | 0.016 | 87.195 | |
归一化植被指数NDVI | 2.956 | 0.101 | 0.028 | 86.781 | |
比值植被指数RVI | 2.946 | 0.102 | 0.036 | 87.853 | |
土壤调节植被指数SAVI | 2.985 | 0.099 | 0.028 | 86.735 | |
全球植被湿度指数GVMI | 2.655 | 0.119 | 0.015 | 87.197 | |
优化土壤调节植被指数OSAVI | 2.959 | 0.101 | 0.029 | 86.780 |
植被指数 Vegetation index | 中等植被覆盖区 Moderate vegetation coverage area | 低植被覆盖区与高植被覆盖区 Low vegetation coverage area and high vegetation coverage area | ||
---|---|---|---|---|
草地三角形植被指数GTVI | 0.695 | 25.847 | 0.786 | 51.684 |
增强型植被指数EVI | 0.580 | 30.339 | 0.764 | 54.200 |
绿红植被指数GRVI | 0.492 | 33.372 | 0.656 | 58.105 |
全球植被湿度指数GVMI | 0.333 | 38.247 | 0.693 | 61.911 |
Table 8 Analysis of GTVI precision improvement in medium vegetation coverage area
植被指数 Vegetation index | 中等植被覆盖区 Moderate vegetation coverage area | 低植被覆盖区与高植被覆盖区 Low vegetation coverage area and high vegetation coverage area | ||
---|---|---|---|---|
草地三角形植被指数GTVI | 0.695 | 25.847 | 0.786 | 51.684 |
增强型植被指数EVI | 0.580 | 30.339 | 0.764 | 54.200 |
绿红植被指数GRVI | 0.492 | 33.372 | 0.656 | 58.105 |
全球植被湿度指数GVMI | 0.333 | 38.247 | 0.693 | 61.911 |
1 | Hu Z M, Fan J W, Zhong H P, et al. Progress on grassland underground biomass researches in China. Chinese Journal of Ecology, 2005(9): 1095-1101. |
胡中民, 樊江文, 钟华平, 等. 中国草地地下生物量研究进展. 生态学杂志, 2005(9): 1095-1101. | |
2 | Wang W, Peng S S, Fang J Y. Biomass distribution of natural grasslands and it response to climate change in North China. Arid Zone Research, 2008, 25(1): 90-97. |
王娓, 彭书时, 方精云. 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究, 2008, 25(1): 90-97. | |
3 | Shao J. Monitoring of shrub encroachment into grassland by utilizing Sentinel-1 and Sentinel-2 jointly-Taking Xilingol grassland as an example. Beijing: University of Chinese Academy of Sciences, 2020. |
邵京. 联合Sentinel-1与Sentinel-2的草地灌丛化监测研究-以锡林郭勒盟草原为例. 北京: 中国科学院大学, 2020. | |
4 | Kawamura K, Akiyama T, Yokota H, et al. Monitoring of forage conditions with MODIS imagery in the Xilingol steppe, Inner Mongolia. International Journal of Remote Sensing, 2005, 26(7): 1423-1436. |
5 | Ren H, Zhou G, Zhang F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 2018, 209(2): 439-445. |
6 | Guo C F, Chen W J, Niu M Y, et al. Collaborative estimation of aboveground biomass in grassland based on multiple vegetation index models. Agricultural Research in the Arid Areas, 2022, 40(4): 206-213. |
郭超凡, 陈雯璟, 牛明艳, 等. 基于多植被指数模型的草地地上生物量协同估算. 干旱地区农业研究, 2022, 40(4): 206-213. | |
7 | Zhao Y H, Hou M J, Feng Q S, et al. Estimation of aboveground biomass in Menyuan grassland based on Landsat 8 and random forest approach. Acta Prataculturae Sinica, 2022, 31(7): 1-14. |
赵翊含, 侯蒙京, 冯琦胜, 等. 基于Landsat 8和随机森林的青海门源天然草地地上生物量遥感估算. 草业学报, 2022, 31(7): 1-14. | |
8 | Guo Q X, Zhang F. Study on estimation of forest biomass based on remote sensing data. Journal of Northeast Forestry University, 2003, 31(2): 13-16. |
国庆喜, 张锋. 基于遥感信息估测森林的生物量. 东北林业大学学报, 2003, 31(2): 13-16. | |
9 | Wu Lan T Y, Bao G, Wu Yun D J, et al. Hyper-spectral remote sensing estimates of aboveground biomass of grassland. Journal of Inner Mongolia Normal University (Natural Science Edition), 2015, 44(5): 660-666. |
乌兰吐雅, 包刚, 乌云德吉, 等. 草地地上生物量高光谱遥感估算研究. 内蒙古师范大学学报(自然科学汉文版), 2015, 44(5): 660-666. | |
10 | Wang G X, Jing C Q, Dong P, et al. Study on biomass estimation and influencing factors of desert grassland in Xinjiang. Acta Agrestia Sinica, 2022, 30(7): 1862-1872. |
王公鑫, 井长青, 董萍, 等. 新疆荒漠草地生物量估算及影响因素研究. 草地学报, 2022, 30(7): 1862-1872. | |
11 | Ding R J. Intelligent recognition of targets in specific areas based on satellite remote sensing images. Guilin: Guangxi Normal University, 2022. |
丁锐进. 基于卫星遥感图像的特定地区目标智能识别. 桂林: 广西师范大学, 2022. | |
12 | Sun B, Li Z Y, Guo Z, et al. Comparison of sparse vegetation information estimation based on GF-1 and Landsat multi-spectral data. Remote Sensing Information, 2015, 30(5): 48-56. |
孙斌, 李增元, 郭中, 等. 高分一号与Landsat TM数据估算稀疏植被信息对比. 遥感信息, 2015, 30(5): 48-56. | |
13 | Yu H, Wu Y F, Jin Y, et al. Retrieving and spatiotemporal variation of aboveground biomass of grassland in arid area based on MODIS SWIR data. Remote Sensing Technology and Application, 2017, 32(3): 524-530. |
于惠, 吴玉锋, 金毅, 等. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究. 遥感技术与应用, 2017, 32(3): 524-530. | |
14 | Zhi R, Chen M M, Yan M, et al. Research on the influence of herdsmen’s family income under the grassland subsidy policy-Take Xilingol League, Inner Mongolia as an example. Acta Agrestia Sinica, 2022, 30(12): 3392-3401. |
智荣, 陈梅梅, 闫敏, 等. 草原补奖政策下牧户家庭收入的影响研究-以内蒙古锡林郭勒盟为例. 草地学报, 2022, 30(12): 3392-3401. | |
15 | Xu Q C. Effects of grassland carbon cycle on drought in Xilingol League. Qufu: Qufu Normal University, 2021. |
徐清宸. 锡林郭勒盟草地碳循环对干旱的响应. 曲阜: 曲阜师范大学, 2021. | |
16 | Rong R, Sun B, Wu Z T, et al. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland. Acta Prataculturae Sinica, 2023, 32(1): 36-47. |
戎荣, 孙斌, 武志涛, 等. 灌丛化草原小叶锦鸡儿灌丛地上生物量测量方法研究. 草业学报, 2023, 32(1): 36-47. | |
17 | Jesús D, Jochem V, Luis A, et al. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 2011, 11(7): 7063-7081. |
18 | Xie E H, Wu J E, Yang K. Mass concentration inversion for chlorophyll a in Erhai lake based on Sentinel-2. Chinese Journal of Environmental Engineering, 2022, 16(9): 3058-3069. |
谢恩弘, 吴骏恩, 杨昆. 基于Sentinel-2影像的洱海叶绿素a质量浓度反演. 环境工程学报, 2022,16(9): 3058-3069. | |
19 | Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172. |
20 | Jiang Z Y, Huete A R, Didan K, et al. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 2008, 112(10): 3833-3845. |
21 | Huang J X, Wu J, Li C B, et al. Remote sensing retrieval of grassland above-ground biomass in Tianzhu County based on Sentinel-2 and Landsat 8 data. Acta Agrestia Sinica, 2021, 29(9): 2023-2030. |
黄家兴, 吴静, 李纯斌, 等. 基于Sentinel-2和Landsat 8数据的天祝县草地地上生物量遥感反演. 草地学报, 2021, 29(9): 2023-2030. | |
22 | Wu C, Niu Z, Gao S. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland. Ecological Indicators, 2011, 14(1): 66-73. |
23 | Hardisky M A, Daiber F C, Roman C T, et al. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh. Remote Sensing of Environment, 1984, 16(2): 91-106. |
24 | Steven M D. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sensing of Environment, 1998, 63(1): 49-60. |
25 | Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25(3): 295-309. |
26 | Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48(2): 119-126. |
27 | Ren Z P, Gao R, Wang D Q. Identification and classification of rice lodging based on Sentinel-2 multispectral image. Water Saving Irrigation, 2022(7): 44-50. |
任志鹏, 高睿, 王大庆. 基于哨兵2号多光谱影像的水稻倒伏识别与分类. 节水灌溉, 2022(7): 44-50. | |
28 | Ceccato P, Flasse S, Grégoire J M. Designing a spectral index to estimate vegetation water content from remote sensing data. Remote Sensing of Environment, 2022, 82(2): 198-207. |
29 | Geisser S A. A predictive approach to the random effect model. Biometrika, 1974, 61(1): 101-107. |
30 | Wen B M, Zhao L W, Huang L. Proof of the asymptotic equivalence between AIC criterion and LOOCV. Statistics & Decision, 2022, 38(6): 40-43. |
文冰梅, 赵联文, 黄磊. AIC准则与留一法交叉验证渐近等价的证明. 统计与决策, 2022, 38(6): 40-43. | |
31 | Gao Z H, Li Z Y, Wei H D, et al. Study on the suitability of vegetation indices(Ⅵ) in arid area. Journal of Desert Research, 2006, 26(2): 243-248. |
高志海, 李增元, 魏怀东, 等. 干旱地区植被指数(Ⅵ)的适宜性研究. 中国沙漠, 2006, 26(2): 243-248. | |
32 | Zhang X X. A comparative study on different vegetation indices in capabilities for eliminating soil background noise and detecting vegetation coverage. Highlights of Sciencepaper Online, 2016, 9(2): 126-132. |
张秀霞. 不同植被指数抵抗土壤背景噪声及探测植被覆盖能力的对比分析. 中国科技论文在线精品论文, 2016, 9(2): 126-132. | |
33 | Dong L X, Wu B F, Tang S H. Estimation of forest aboveground biomass by integrating GLAS and ETM data. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(4): 703-710. |
董立新, 吴炳方, 唐世浩. 激光雷达GLAS与ETM联合反演森林地上生物量研究. 北京大学学报(自然科学版), 2011,47(4): 703-710. | |
34 | Ma C, Shi Y, Li M H, et al. Research of grassland biomass model based on NDVI in loess hilly and gully region-A case of Pengyang County, Ningxia. Ningxia Engineering Technology, 2017, 16(1): 19-23. |
马超, 石云, 李梦华, 等. 基于NDVI的黄土丘陵沟壑区草地生物量模型研究-以宁夏彭阳县为例. 宁夏工程技术, 2017, 16(1): 19-23. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||