Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (7): 122-134.DOI: 10.11686/cyxb2022343
Wen-qing LING1(), Lei ZHANG1(), Jue LI1, Qi-xian FENG1, Yan LI1,2, Yi ZHOU1, Yi-jia LIU1,2, Fu-lin YANG1(), Jing ZHOU2()
Received:
2022-08-27
Revised:
2022-11-21
Online:
2023-07-20
Published:
2023-05-26
Contact:
Fu-lin YANG,Jing ZHOU
Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage[J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134.
测定项目Items | 含量Content |
---|---|
干物质Dry matter (DM, % FW) | 19.30 |
粗蛋白Crude protein (CP, % DM) | 24.01 |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.62 |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 28.75 |
半纤维素Hemicellulose (HC, % DM) | 10.87 |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 6.04 |
pH | 6.28 |
乳酸菌Lactic acid bacteria (LAB, lg cfu·g-1 FW) | 4.15 |
好氧细菌Aerobic bacteria (AB, lg cfu·g-1 FW) | 4.38 |
酵母菌及霉菌Yeasts and Molds (lg cfu·g-1 FW) | 5.81 |
Table 1 Nutrient composition and microbial composition of alfalfa
测定项目Items | 含量Content |
---|---|
干物质Dry matter (DM, % FW) | 19.30 |
粗蛋白Crude protein (CP, % DM) | 24.01 |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.62 |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 28.75 |
半纤维素Hemicellulose (HC, % DM) | 10.87 |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 6.04 |
pH | 6.28 |
乳酸菌Lactic acid bacteria (LAB, lg cfu·g-1 FW) | 4.15 |
好氧细菌Aerobic bacteria (AB, lg cfu·g-1 FW) | 4.38 |
酵母菌及霉菌Yeasts and Molds (lg cfu·g-1 FW) | 5.81 |
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM, % FW) | 18.89±0.68b | 19.18±0.84b | 22.35±0.82a | 21.05±0.65a |
粗蛋白Crude protein (CP, % DM) | 17.27±0.51c | 20.61±0.46b | 24.34±0.16a | 19.74±1.66b |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.44±1.06a | 39.68±2.10a | 34.50±1.70b | 40.00±0.44a |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 31.66±0.07a | 28.75±0.46c | 25.70±0.15d | 29.95±0.77b |
半纤维素Hemicellulose (HC, % DM) | 7.78±1.13b | 10.93±2.21a | 8.81±1.56ab | 10.04±0.68ab |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 2.57±0.22b | 1.73±0.12c | 2.68±0.18b | 4.15±0.11a |
Table 2 Effects of L. buchneri combined with different sugars on nutritional composition of alfalfa silage
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM, % FW) | 18.89±0.68b | 19.18±0.84b | 22.35±0.82a | 21.05±0.65a |
粗蛋白Crude protein (CP, % DM) | 17.27±0.51c | 20.61±0.46b | 24.34±0.16a | 19.74±1.66b |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.44±1.06a | 39.68±2.10a | 34.50±1.70b | 40.00±0.44a |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 31.66±0.07a | 28.75±0.46c | 25.70±0.15d | 29.95±0.77b |
半纤维素Hemicellulose (HC, % DM) | 7.78±1.13b | 10.93±2.21a | 8.81±1.56ab | 10.04±0.68ab |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 2.57±0.22b | 1.73±0.12c | 2.68±0.18b | 4.15±0.11a |
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
pH | 5.83±0.02b | 5.72±0.09c | 5.64±0.01c | 6.14±0.02a |
乳酸Lactic acid (LA, % DM) | 2.13±0.07b | 2.02±0.01c | 3.89±0.07a | 2.07±0.01c |
乙酸Acetic acid (AA, %DM) | 0.43±0.01a | 0.33±0.01b | 0.22±0.02d | 0.28±0.02c |
丙酸Propionic acid (PA, %DM) | 0.34±0.01d | 0.71±0.16b | 1.08±0.45a | 0.53±0.37c |
丁酸Butyric acid (BA, % DM) | 0.05±0.00a | 0.04±0.00b | 0.04±0.01ab | 0.05±0.01a |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 13.57±0.08a | 10.48±0.23c | 6.27±0.05d | 11.24±0.47b |
Table 3 Effects of L. buchneri combined with different sugars on fermentation quality of alfalfa silage
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
pH | 5.83±0.02b | 5.72±0.09c | 5.64±0.01c | 6.14±0.02a |
乳酸Lactic acid (LA, % DM) | 2.13±0.07b | 2.02±0.01c | 3.89±0.07a | 2.07±0.01c |
乙酸Acetic acid (AA, %DM) | 0.43±0.01a | 0.33±0.01b | 0.22±0.02d | 0.28±0.02c |
丙酸Propionic acid (PA, %DM) | 0.34±0.01d | 0.71±0.16b | 1.08±0.45a | 0.53±0.37c |
丁酸Butyric acid (BA, % DM) | 0.05±0.00a | 0.04±0.00b | 0.04±0.01ab | 0.05±0.01a |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 13.57±0.08a | 10.48±0.23c | 6.27±0.05d | 11.24±0.47b |
参数 Parameters | DM降解率DM degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.11±1.08Fc | 21.56±1.37Fb | 24.48±0.56Fa | 24.61±0.94Fa |
8 h | 22.42±2.66Eb | 29.49±1.23Ea | 32.08±1.71Ea | 30.91±1.57Ea |
12 h | 33.49±1.07Dc | 38.29±0.88Db | 39.65±1.23Db | 42.75±2.46Da |
24 h | 42.02±3.14Cb | 53.83±2.28Ca | 54.49±1.81Ca | 56.71±0.05Ca |
48 h | 62.30±1.96Bc | 65.76±1.11Bb | 68.91±0.23Ba | 62.94±2.05B |
72 h | 65.52±2.15Ab | 68.27±0.92Aab | 71.57±1.22Aa | 66.62±2.70Ab |
a (%) | 6.40±1.41d | 8.91±0.77c | 13.60±0.66a | 9.67±1.53b |
b (%) | 63.79±1.43a | 60.90±0.69b | 60.69±0.60c | 56.70±1.41d |
a+b (%) | 70.19±0.02b | 69.81±0.08c | 74.29±0.06a | 66.37±0.12d |
c (%·h-1) | 0.04±0.00c | 0.05±0.00b | 0.05±0.00b | 0.07±0.00a |
ED (%) | 45.03±0.54d | 50.57±0.30c | 53.05±0.27a | 51.17±0.50b |
R2 | 0.98 | 0.99 | 0.99 | 0.98 |
Table 4 DM degradation rate at different time and degradation parameters
参数 Parameters | DM降解率DM degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.11±1.08Fc | 21.56±1.37Fb | 24.48±0.56Fa | 24.61±0.94Fa |
8 h | 22.42±2.66Eb | 29.49±1.23Ea | 32.08±1.71Ea | 30.91±1.57Ea |
12 h | 33.49±1.07Dc | 38.29±0.88Db | 39.65±1.23Db | 42.75±2.46Da |
24 h | 42.02±3.14Cb | 53.83±2.28Ca | 54.49±1.81Ca | 56.71±0.05Ca |
48 h | 62.30±1.96Bc | 65.76±1.11Bb | 68.91±0.23Ba | 62.94±2.05B |
72 h | 65.52±2.15Ab | 68.27±0.92Aab | 71.57±1.22Aa | 66.62±2.70Ab |
a (%) | 6.40±1.41d | 8.91±0.77c | 13.60±0.66a | 9.67±1.53b |
b (%) | 63.79±1.43a | 60.90±0.69b | 60.69±0.60c | 56.70±1.41d |
a+b (%) | 70.19±0.02b | 69.81±0.08c | 74.29±0.06a | 66.37±0.12d |
c (%·h-1) | 0.04±0.00c | 0.05±0.00b | 0.05±0.00b | 0.07±0.00a |
ED (%) | 45.03±0.54d | 50.57±0.30c | 53.05±0.27a | 51.17±0.50b |
R2 | 0.98 | 0.99 | 0.99 | 0.98 |
参数 Parameters | CP降解率CP degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 40.29±0.99Ea | 38.07±2.96Ea | 41.51±1.27Ea | 40.22±2.00Ea |
8 h | 55.96±1.58Dab | 54.58±1.12Db | 56.50±1.01Dab | 58.20±1.22Da |
12 h | 61.65±1.27Ca | 61.16±1.53Ca | 62.61±1.78Ca | 64.01±1.35Ca |
24 h | 64.92±0.56Bb | 65.29±0.49Bb | 67.56±1.20Ba | 68.78±1.21Ba |
48 h | 72.84±1.27Ab | 75.48±1.84Aab | 77.12±1.60Aa | 74.73±1.98Aab |
72 h | 74.46±0.69Ab | 76.45±2.41Aab | 78.48±0.62Aa | 76.48±0.55Aab |
a (%) | 21.58±3.04b | 21.54±3.07b | 27.96±2.31a | 13.23±3.41c |
b (%) | 50.61±2.89c | 53.19±2.92b | 49.09±2.18d | 60.92±3.28a |
a+b (%) | 72.20±0.15d | 74.73±0.16b | 77.05±0.13a | 74.15±0.13c |
c (%·h-1) | 0.13±0.01b | 0.11±0.01c | 0.09±0.01d | 0.15±0.01a |
ED (%) | 63.71±0.63d | 64.44±0.72c | 66.64±0.59a | 65.48±0.59b |
R2 | 0.95 | 0.94 | 0.96 | 0.96 |
Table 5 CP degradation rate at different time and degradation parameters
参数 Parameters | CP降解率CP degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 40.29±0.99Ea | 38.07±2.96Ea | 41.51±1.27Ea | 40.22±2.00Ea |
8 h | 55.96±1.58Dab | 54.58±1.12Db | 56.50±1.01Dab | 58.20±1.22Da |
12 h | 61.65±1.27Ca | 61.16±1.53Ca | 62.61±1.78Ca | 64.01±1.35Ca |
24 h | 64.92±0.56Bb | 65.29±0.49Bb | 67.56±1.20Ba | 68.78±1.21Ba |
48 h | 72.84±1.27Ab | 75.48±1.84Aab | 77.12±1.60Aa | 74.73±1.98Aab |
72 h | 74.46±0.69Ab | 76.45±2.41Aab | 78.48±0.62Aa | 76.48±0.55Aab |
a (%) | 21.58±3.04b | 21.54±3.07b | 27.96±2.31a | 13.23±3.41c |
b (%) | 50.61±2.89c | 53.19±2.92b | 49.09±2.18d | 60.92±3.28a |
a+b (%) | 72.20±0.15d | 74.73±0.16b | 77.05±0.13a | 74.15±0.13c |
c (%·h-1) | 0.13±0.01b | 0.11±0.01c | 0.09±0.01d | 0.15±0.01a |
ED (%) | 63.71±0.63d | 64.44±0.72c | 66.64±0.59a | 65.48±0.59b |
R2 | 0.95 | 0.94 | 0.96 | 0.96 |
参数 Parameters | ADF降解率ADF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.31±1.81Eb | 18.65±5.23Eab | 15.88±1.34Eb | 23.89±1.37Ea |
8 h | 26.32±1.80Db | 30.40±2.07Da | 26.04±1.69Db | 27.97±1.41Dab |
12 h | 32.69±1.38Cab | 35.72±2.51Ca | 31.71±0.82Cb | 33.62±1.74Cab |
24 h | 42.42±1.09Bab | 42.78±0.83Bab | 40.30±2.51Bb | 43.55±1.50Ba |
48 h | 52.61±1.11Aab | 53.99±1.51Aab | 50.46±2.52Ab | 55.03±3.15Aa |
72 h | 54.07±1.75Aab | 55.80±0.91Aa | 52.65±1.61Ab | 56.79±1.92Aa |
a (%) | 4.93±1.10d | 10.69±1.81b | 7.48±1.20c | 16.58±0.93a |
b (%) | 49.38±1.00a | 45.22±1.64b | 45.44±1.09b | 43.07±0.89c |
a+b (%) | 54.31±0.09c | 55.91±0.17b | 52.91±0.11d | 59.64±0.04a |
c (%·h-1) | 0.07±0.00a | 0.06±0.01a | 0.06±0.00a | 0.04±0.00b |
ED (%) | 40.61±0.37c | 42.69±0.65b | 40.05±0.42c | 43.41±0.38a |
R2 | 0.99 | 0.96 | 0.98 | 0.98 |
Table 6 ADF degradation rate at different time and degradation parameters
参数 Parameters | ADF降解率ADF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.31±1.81Eb | 18.65±5.23Eab | 15.88±1.34Eb | 23.89±1.37Ea |
8 h | 26.32±1.80Db | 30.40±2.07Da | 26.04±1.69Db | 27.97±1.41Dab |
12 h | 32.69±1.38Cab | 35.72±2.51Ca | 31.71±0.82Cb | 33.62±1.74Cab |
24 h | 42.42±1.09Bab | 42.78±0.83Bab | 40.30±2.51Bb | 43.55±1.50Ba |
48 h | 52.61±1.11Aab | 53.99±1.51Aab | 50.46±2.52Ab | 55.03±3.15Aa |
72 h | 54.07±1.75Aab | 55.80±0.91Aa | 52.65±1.61Ab | 56.79±1.92Aa |
a (%) | 4.93±1.10d | 10.69±1.81b | 7.48±1.20c | 16.58±0.93a |
b (%) | 49.38±1.00a | 45.22±1.64b | 45.44±1.09b | 43.07±0.89c |
a+b (%) | 54.31±0.09c | 55.91±0.17b | 52.91±0.11d | 59.64±0.04a |
c (%·h-1) | 0.07±0.00a | 0.06±0.01a | 0.06±0.00a | 0.04±0.00b |
ED (%) | 40.61±0.37c | 42.69±0.65b | 40.05±0.42c | 43.41±0.38a |
R2 | 0.99 | 0.96 | 0.98 | 0.98 |
参数 Parameters | NDF降解率NDF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.52±2.77Fb | 18.12±4.30Eab | 18.16±1.81Fab | 21.52±0.61Fa |
8 h | 24.59±0.72Ec | 27.75±1.46Dab | 25.60±1.42Ebc | 28.51±0.92Ea |
12 h | 31.78±1.64Db | 36.09±0.51Ca | 37.65±1.26Da | 35.84±1.57Da |
24 h | 40.34±0.96Cb | 47.01±1.36Ba | 46.10±0.74Ca | 47.74±0.91Ca |
48 h | 55.82±1.37Bab | 58.28±1.56Aa | 55.66±1.28Bab | 54.49±2.19Bb |
72 h | 59.00±0.82Aab | 59.88±1.96Aa | 57.99±0.98Aab | 57.32±1.00Ab |
a (%) | 8.29±1.03b | 6.82±1.28c | 5.59±1.32d | 10.66±0.80a |
b (%) | 53.31±0.97a | 53.75±1.16a | 52.27±1.21b | 46.75±0.73c |
a+b (%) | 61.60±0.06a | 60.57±0.12b | 57.86±0.11c | 57.41±0.07c |
c (%·h-1) | 0.04±0.00b | 0.06±0.00a | 0.07±0.00a | 0.06±0.00a |
ED (%) | 41.87±0.42c | 44.91±0.46a | 43.67±0.44b | 44.10±0.28a |
R2 | 0.99 | 0.98 | 0.98 | 0.99 |
Table 7 NDF degradation rate at different time and degradation parameters
参数 Parameters | NDF降解率NDF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.52±2.77Fb | 18.12±4.30Eab | 18.16±1.81Fab | 21.52±0.61Fa |
8 h | 24.59±0.72Ec | 27.75±1.46Dab | 25.60±1.42Ebc | 28.51±0.92Ea |
12 h | 31.78±1.64Db | 36.09±0.51Ca | 37.65±1.26Da | 35.84±1.57Da |
24 h | 40.34±0.96Cb | 47.01±1.36Ba | 46.10±0.74Ca | 47.74±0.91Ca |
48 h | 55.82±1.37Bab | 58.28±1.56Aa | 55.66±1.28Bab | 54.49±2.19Bb |
72 h | 59.00±0.82Aab | 59.88±1.96Aa | 57.99±0.98Aab | 57.32±1.00Ab |
a (%) | 8.29±1.03b | 6.82±1.28c | 5.59±1.32d | 10.66±0.80a |
b (%) | 53.31±0.97a | 53.75±1.16a | 52.27±1.21b | 46.75±0.73c |
a+b (%) | 61.60±0.06a | 60.57±0.12b | 57.86±0.11c | 57.41±0.07c |
c (%·h-1) | 0.04±0.00b | 0.06±0.00a | 0.07±0.00a | 0.06±0.00a |
ED (%) | 41.87±0.42c | 44.91±0.46a | 43.67±0.44b | 44.10±0.28a |
R2 | 0.99 | 0.98 | 0.98 | 0.99 |
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM) | 0.00 | 0.08 | 1.00 | 0.62 |
粗蛋白Crude protein (CP) | 0.00 | 0.47 | 1.00 | 0.35 |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.10 | 0.06 | 1.00 | 0.29 |
酸性洗涤纤维Acid detergent fiber (ADF) | 0.00 | 0.45 | 1.00 | 0.29 |
可溶性碳水化合物Water-soluble carbohydrate (WSC) | 0.35 | 0.00 | 0.39 | 1.00 |
pH (青贮60 d ) pH (silage for 60 days) | 0.62 | 0.84 | 1.00 | 0.00 |
乳酸Lactic acid (LA) | 0.06 | 0.01 | 1.00 | 0.00 |
乙酸Acetic acid (AA) | 1.00 | 0.52 | 0.00 | 0.29 |
丙酸Propionic acid (PA) | 0.00 | 0.50 | 1.00 | 0.26 |
丁酸 Butyric acid (BA) | 0.00 | 1.00 | 1.00 | 0.00 |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 0.00 | 0.42 | 1.00 | 0.32 |
干物质有效降解率Effective degradation rate of dry matter | 0.00 | 0.69 | 1.00 | 0.77 |
酸性洗涤纤维有效降解率Effective degradation rate of acid detergent fiber | 0.17 | 0.79 | 0.00 | 1.00 |
中性洗涤纤维有效降解率Effective degradation rate of neutral detergent fiber | 0.00 | 1.00 | 0.59 | 0.73 |
pH (有氧暴露6 d) pH (on the 6 d of aerobic exposure) | 0.00 | 0.39 | 0.32 | 1.00 |
有氧暴露6 d酵母菌数量Quantity of yeast on the 6 days of aerobic exposure | 0.00 | 0.78 | 0.78 | 1.00 |
有氧暴露6 d好氧菌数量Quantity of aerobic bacteria on the 6 days of aerobic exposure | 0.00 | 1.00 | 0.91 | 0.95 |
隶属度平均值Average value | 0.14 | 0.53 | 0.76 | 0.52 |
排序Rank | 4 | 2 | 1 | 3 |
Table 8 Comprehensive value evaluation and ranking
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM) | 0.00 | 0.08 | 1.00 | 0.62 |
粗蛋白Crude protein (CP) | 0.00 | 0.47 | 1.00 | 0.35 |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.10 | 0.06 | 1.00 | 0.29 |
酸性洗涤纤维Acid detergent fiber (ADF) | 0.00 | 0.45 | 1.00 | 0.29 |
可溶性碳水化合物Water-soluble carbohydrate (WSC) | 0.35 | 0.00 | 0.39 | 1.00 |
pH (青贮60 d ) pH (silage for 60 days) | 0.62 | 0.84 | 1.00 | 0.00 |
乳酸Lactic acid (LA) | 0.06 | 0.01 | 1.00 | 0.00 |
乙酸Acetic acid (AA) | 1.00 | 0.52 | 0.00 | 0.29 |
丙酸Propionic acid (PA) | 0.00 | 0.50 | 1.00 | 0.26 |
丁酸 Butyric acid (BA) | 0.00 | 1.00 | 1.00 | 0.00 |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 0.00 | 0.42 | 1.00 | 0.32 |
干物质有效降解率Effective degradation rate of dry matter | 0.00 | 0.69 | 1.00 | 0.77 |
酸性洗涤纤维有效降解率Effective degradation rate of acid detergent fiber | 0.17 | 0.79 | 0.00 | 1.00 |
中性洗涤纤维有效降解率Effective degradation rate of neutral detergent fiber | 0.00 | 1.00 | 0.59 | 0.73 |
pH (有氧暴露6 d) pH (on the 6 d of aerobic exposure) | 0.00 | 0.39 | 0.32 | 1.00 |
有氧暴露6 d酵母菌数量Quantity of yeast on the 6 days of aerobic exposure | 0.00 | 0.78 | 0.78 | 1.00 |
有氧暴露6 d好氧菌数量Quantity of aerobic bacteria on the 6 days of aerobic exposure | 0.00 | 1.00 | 0.91 | 0.95 |
隶属度平均值Average value | 0.14 | 0.53 | 0.76 | 0.52 |
排序Rank | 4 | 2 | 1 | 3 |
1 | Zhao S, Yang F, Wang Y, et al. Dynamics of fermentation parameters and bacterial community in high-moisture alfalfa silage with or without lactic acid bacteria. Microorganisms, 2021, 9(6): 1225. |
2 | Li G Y, Zhang L J. Alfalfa silage additives and their applying progress. Animal Husbandry and Feed Science, 2013, 34(10): 32-34. |
李光耀, 张力君. 苜蓿青贮添加剂及其应用进展. 畜牧与饲料科学, 2013, 34(10): 32-34. | |
3 | Wang T, Song L, Wang X Z, et al. Effect of compound Lactobacillus and mixture ratio on fermentation quality and rumen degradability of mixed tomato pomace and alfalfa silage mixed storage. Acta Prataculturae Sinica, 2022, 31(10): 167-177. |
王挺, 宋磊, 王旭哲, 等. 复合乳酸菌对番茄皮渣与苜蓿混合青贮发酵品质及瘤胃降解率的影响. 草业学报, 2022, 31(10): 167-177. | |
4 | Arriola K G, Oliveira A, Jiang Y, et al. Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. Journal of Dairy Science, 2021, 104(7): 7653-7670. |
5 | Drouin P, Tremblay J, da Silva É B, et al. Changes to the microbiome of alfalfa during the growing season and after ensiling with Lentilactobacillus buchneri and Lentilactobacillus hilgardii inoculant. Journal of Applied Microbiology, 2022, 133(4): 2331-2347. |
6 | Dong Z H, Yuan X J, Wen A Y, et al. Effect of lactic acid bacteria and fermentation substrates on the quality of mulberry (Morus alba) leaf silage. Acta Prataculturae Sinica, 2016, 25(6): 167-174. |
董志浩, 原现军, 闻爱友, 等. 添加乳酸菌和发酵底物对桑叶青贮发酵品质的影响. 草业学报, 2016, 25(6): 167-174. | |
7 | Xu H, Liu Y, Kan H. Research progress on extraction, purification and physiological activity of natural polysaccharides. Food Safety and Quality Detection Technology, 2022, 13(5): 1382-1390. |
徐涵, 刘云, 阚欢. 天然多糖提取纯化及生理功能活性研究进展. 食品安全质量检测学报, 2022, 13(5): 1382-1390. | |
8 | Zhang L, Zhang J, Han X L, et al. Study on biological activity of fucoidan and its application in animal production. Heilongjiang Animal Science and Veterinary Medicine, 2022(1): 47-52. |
张磊, 张娟, 韩雪林, 等. 岩藻多糖的生物学活性研究及在动物生产中的应用. 黑龙江畜牧兽医, 2022(1): 47-52. | |
9 | Zhang L Y. Feed analysis and feed quality detection technology (2nd Edition). Beijing: China Agricultural University Press, 2007: 46-75. |
张丽英. 饲料分析及饲料质量检测技术(第2版). 北京: 中国农业大学出版社, 2007: 46-75. | |
10 | Feng Q X, Shi W J, Chen S Q, et al. Addition of organic acids and Lactobacillus acidophilus to the leguminous forage Chamaecrista rotundifolia improved the quality and decreased harmful bacteria of the silage. Animals, 2022, 12(17): 2260. |
11 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
12 | Yuan X J, Wen A Y, Wang J, et al. Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa (Medicago sativa L.) silage. Journal of the Science of Food and Agriculture, 2018, 98(1): 328-335. |
13 | Ørskov E R, Mcdonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 1979, 92(2): 499-503. |
14 | Wang X Z, Jia S A, Zhang F F, et al. Fermentation quality and microbial quantity during aerobic storage of corn silage. Acta Prataculturae Sinica, 2017, 26(9): 156-166. |
王旭哲, 贾舒安, 张凡凡, 等. 紧实度对青贮玉米有氧稳定期发酵品质、微生物数量的效应研究. 草业学报, 2017, 26(9): 156-166. | |
15 | Abdul R N, Abd H M R, Mahawi N, et al. Determination of the use of Lactobacillus plantarum and Propionibacterium freudenreichii application on fermentation profile and chemical composition of corn silage. BioMed Research International, 2017(1): 2038062. |
16 | Jones D J C. The biochemistry of silage (2nd edition). UK: Chalcombe Publications, 1991: 386. |
17 | Zhang H, Mu Y X, Zhang G J. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响. 草业学报, 2022, 31(4): 136-144. | |
18 | Kung Jr L, Ranjit N K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science, 2001, 84(5): 1149-1155. |
19 | Ranjit N K, Kung Jr L. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 2000, 83(3): 526-535. |
20 | Rong H, Yu C Q, Chen J, et al. Effect of FJLB, LAB and glucose addition on the fermentation quality of napier grass(Pennisetum purpureum) silage. Acta Prataculturae Sinica, 2013, 22(3): 108-115. |
荣辉, 余成群, 陈杰, 等. 添加绿汁发酵液、乳酸菌制剂和葡萄糖对象草青贮发酵品质的影响. 草业学报, 2013, 22(3): 108-115. | |
21 | Li M, Zi X J, Hu H C, et al. The effect of glucose on the quality and nutrient composition of cassava foliage. Acta Ecologiae Animalis Domastici, 2019, 40(7): 34-37. |
李茂, 字学娟, 胡海超, 等. 添加葡萄糖对木薯叶青贮品质和营养成分的影响. 家畜生态学报, 2019, 40(7): 34-37. | |
22 | Wang L, Bao J Z, Tian F B, et al. Effect of adding Lactobacillus buchneri on ensiling quality of high moisture corn. Feed Industry, 2022, 43(2): 35-39. |
王磊, 包锦泽, 田逢博, 等. 布氏乳杆菌对高湿玉米青贮饲料品质的影响. 饲料工业, 2022, 43(2): 35-39. | |
23 | Contreras-Govea F E, Muck R E, Broderick G A, et al. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Animal Feed Science and Technology, 2013, 179(1/2/3/4): 61-68. |
24 | Wan J C, Xie K Y, Wang Y X, et al. Effects of homo- and hetero-fermentative lactic acid bacteria on yeast community structure and fermentation characteristics during the silage process of Sudangrass. Pratacultural Science, 2019, 36(2): 565-572. |
万江春, 谢开云, 王玉祥, 等. 同/异质型乳酸菌添加对苏丹草青贮酵母菌群落结构及发酵品质的影响. 草业科学, 2019, 36(2): 565-572. | |
25 | Hong M, Diao Q Y, Jiang C G, et al. Review for effect of Lactobacillus buchneri on the silage. Acta Prataculturae Sinica, 2011, 20(5): 266-271. |
洪梅, 刁其玉, 姜成钢, 等. 布氏乳杆菌对青贮发酵及其效果的研究进展. 草业学报, 2011, 20(5): 266-271. | |
26 | Krooneman J, Faber F, Alderkamp A C, et al. Lactobacillus diolivorans sp. nov. a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2): 639-646. |
27 | Wang Y, Zhang X Q, Yang F Y. Effect of adding propionic acid and lactic acid bacteria on fermentation quality of hybrid Pennisetum silage. Pratacultural Science, 2012, 29(9): 1468-1472. |
王雁, 张新全, 杨富裕. 添加丙酸和乳酸菌对杂交狼尾草青贮发酵品质的影响. 草业科学, 2012, 29(9): 1468-1472. | |
28 | Zhang J, Guo G, Chen L, et al. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan Plateau. Animal Science Journal, 2015, 86(6): 595-602. |
29 | Li M, Zhang L, Zhang Q, et al. Impacts of citric acid and malic acid on fermentation quality and bacterial community of cassava foliage silage. Frontiers in Microbiology, 2020, 11: 595622. |
30 | Peyrat J, Noziere P, Le Morvan A, et al. Effects of ensiling maize and sample conditioning on in situ rumen degradation of dry matter, starch and fibre. Animal Feed Science and Technology, 2014, 196: 12-21. |
31 | Jaakkola S, Huhtanen P, Hissa K. The effect of cell wall degrading enzymes or formic acid on fermentation quality and on digestion of grass silage by cattle. Grass and Forage Science, 1991, 46(1): 75-87. |
32 | Spears J W, Schlegel P, Seal M C, et al. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 2004, 90(2/3): 211-217. |
33 | Wang C J. Evaluation on nutritional value and feeding effect of alfalfa and red bean grass. Lanzhou: Gansu Agricultural University, 2018. |
王春军. 紫花苜蓿和红豆草的营养价值及饲喂效果评价. 兰州: 甘肃农业大学, 2018. | |
34 | Zhang L X, Tu Y, Li Y L, et al. Effects of different microbes and their combinations on rumen degradation rate of corn stalk. Chinese Journal of Animal Nutrition, 2014, 26(8): 2433-2444. |
张立霞, 屠焰, 李艳玲, 等. 不同微生物菌株及其组合处理对玉米秸秆瘤胃降解率的影响. 动物营养学报, 2014, 26(8): 2433-2444. | |
35 | Li F F, Zhang F F, Wang X Z, et al. Effects of homo- and heterofermentative lactic acid bacteria on the nutritional quality and ruminal degradation rate of the whole plant maize silage. Acta Prataculturae Sinica, 2019, 28(6): 128-136. |
李菲菲, 张凡凡, 王旭哲, 等. 同/异型发酵乳酸菌对全株玉米青贮营养成分和瘤胃降解特征的影响. 草业学报, 2019, 28(6): 128-136. | |
36 | Meng L K, Guo C H, Peng Z L, et al. Effect of microorganism fermented grass on growth performance, nutrient digestion metabolism and digestive tract microorganism quantity of goats. Feed Industry, 2015, 36(3): 48-52. |
孟令凯, 郭春华, 彭忠利, 等. 微贮牧草对山羊生产性能,饲粮养分消化率和消化道微生物数量的影响. 饲料工业, 2015, 36(3): 48-52. | |
37 | Liu H H. Effects of different additives on alfalfa silage quality, aerobic stability and fermentation parameters.Yinchuan: Ningxia University, 2020. |
刘欢欢. 不同添加剂对苜蓿青贮品质和有氧稳定性及发酵参数的影响. 银川: 宁夏大学, 2020. | |
38 | Li M C, Wang D F, Zhou H L, et al. Effect of cellulase or formic acid on feeding value of silage pineapple leaves. China Animal Husbandry and Veterinary Medicine, 2014, 41(8): 95-100. |
李梦楚, 王定发, 周汉林, 等. 添加纤维素酶或甲酸对青贮菠萝茎叶饲用品质的影响. 中国畜牧兽医, 2014, 41(8): 95-100. | |
39 | Liu T T, Wang S W, Li Q F, et al. Ruminal degradation characteristics of whole maize plant material before and after ensiling in beef cattle as determined in situ using the nylon bag method. Acta Prataculturae Sinica, 2021, 30(1): 159-169. |
刘桃桃, 王思伟, 李秋凤, 等. 利用尼龙袋法比较3个全株玉米品种青贮前后肉牛瘤胃降解特性. 草业学报, 2021, 30(1): 159-169. | |
40 | Ballard C S, Thomas E D, Tsang D S, et al. Effect of corn silage hybrid on dry matter yield, nutrient composition, in vitro digestion, intake by dairy heifers, and milk production by dairy cows. Journal of Dairy Science, 2001, 84(2): 442-452. |
41 | Leng J, Zhang Y, Zhu R J, et al. Rumen degradation characteristics of six types of forages in the Yunnan Yellow Cattle. Chinese Journal of Animal Nutrition, 2011, 23(1): 53-60. |
冷静, 张颖, 朱仁俊, 等. 6种牧草在云南黄牛瘤胃中的降解特性. 动物营养学报, 2011, 23(1): 53-60. | |
42 | Zhao L S, Niu J L, Xu Y J, et al. Ruminal degradation characteristics and small intestinal digestibility of rumen undegraded protein of six feed ingredients. Chinese Journal of Animal Nutrition, 2017, 29(6): 2038-2046. |
赵连生, 牛俊丽, 徐元君, 等. 6种饲料原料瘤胃降解特性和瘤胃非降解蛋白质的小肠消化率. 动物营养学报, 2017, 29(6): 2038-2046. | |
43 | Besharati M, Palangi V, Ghozalpour V, et al. Essential oil and apple pomace affect fermentation and aerobic stability of alfalfa silage. South African Journal of Animal Science, 2021, 51(3): 371-377. |
44 | Besharati M, Palangi V, Nekoo M, et al. Effects of Lactobacillus buchneri inoculation and fresh whey addition on alfalfa silage quality and fermentation properties. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2021, 24(3): 671-678. |
45 | Weiss K, Kroschewski B, Auerbach H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. Journal of Dairy Science, 2016, 99(10): 8053-8069. |
46 | Turan A, Nen S S. Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digestibility of alfalfa silage. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1252-1258. |
47 | Chen L, Yuan X J, L J F, et al. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. Journal of Integrative Agriculture, 2017, 16(7): 1592-1600. |
48 | Muck R E, Nadeau E M G, Mcallister T A, et al. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000. |
[1] | Xiao-xia AN, Ying-ying ZHANG, Chun-hui MA, Man LI, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency [J]. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
[2] | Ting YE, Xiao-juan WU, Yi-xiao LU, Sheng-juan LIU, Zhuo-hui JIANG, Hui-min YANG. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures [J]. Acta Prataculturae Sinica, 2023, 32(5): 127-137. |
[3] | Meng-qi LIANG, Qi-feng WU, Tao SHAO, Ai-li WU, Qin-hua LIU. Effects of additives on the fermentation quality and α-tocopherol and β-carotene contents in Italian ryegrass silage [J]. Acta Prataculturae Sinica, 2023, 32(5): 180-189. |
[4] | Shi-min ZHANG, Jiao-yang ZHAO, Hui-sen ZHU, Kai WEI, Yong-xin WANG. Effects of selenium on metabolic transformation and morphogenesis in different varieties of alfalfa during the germination stage [J]. Acta Prataculturae Sinica, 2023, 32(4): 79-90. |
[5] | Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance [J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
[6] | Shou-jiang SUN, Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 152-162. |
[7] | Xuan-shuai LIU, Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa [J]. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
[8] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[9] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[10] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[11] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[12] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[13] | Dong-qing FU, Chun-ying JIA, Li ZHANG, Fan-fan ZHANG, Chun-hui MA. Agronomic traits and fermentation quality of maize silage harvested at different grain-development stages in irrigated drought areas of southern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 111-125. |
[14] | Ying-zheng LI, Yu-lin CHENG, Lu-lu XU, Wan-song LI, Xu YAN, Xiao-feng LI, Ru-yu HE, Yang ZHOU, Jun-jun ZHENG, Xing-yu WANG, De-long ZHANG, Ming-jun CHENG, Yun-hong XIA, Jian-mei HE, Qi-lin TANG. A comparative study of silage quality characteristics of whole-plant, whole-ear and whole-straw silage of different maize varieties (lines) [J]. Acta Prataculturae Sinica, 2022, 31(8): 144-156. |
[15] | Yong-jie WU, Hao DING, Tao SHAO, Jie ZHAO, Dong DONG, Tong-tong DAI, Xue-jing YIN, Cheng ZONG, Jun-feng LI. Effects of enzyme additives on fermentation quality and in vitro digestion characteristics of rice straw silage [J]. Acta Prataculturae Sinica, 2022, 31(8): 167-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||