Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (1): 198-206.DOI: 10.11686/cyxb2023089
Shou-jiang SUN(), Wen MA, Pei-sheng MAO(), Li-ru DOU, Zhi-cheng JIA, Ming SUN, Juan WANG
Received:
2023-03-22
Revised:
2023-05-29
Online:
2024-01-20
Published:
2023-11-23
Contact:
Pei-sheng MAO
Shou-jiang SUN, Wen MA, Pei-sheng MAO, Li-ru DOU, Zhi-cheng JIA, Ming SUN, Juan WANG. Regulation of telomere DNA binding protein and telomerase activity in plants[J]. Acta Prataculturae Sinica, 2024, 33(1): 198-206.
结构域Domain | 蛋白Protein | 物种Species |
---|---|---|
含有Myb结构域的蛋白 Proteins containing the Myb domain | AtTRB1-3 | 拟南芥A.thaliana |
AtTBP1 | 拟南芥A.thaliana | |
AtTRFL2-10 | 拟南芥A.thaliana | |
CST 复合体蛋白 CST complex protein | AtStn1 | 拟南芥A.thaliana |
AtTEN1 | 拟南芥A.thaliana | |
AtCTC1 | 拟南芥A.thaliana |
Table 1 Telomere double-stranded DNA binding protein
结构域Domain | 蛋白Protein | 物种Species |
---|---|---|
含有Myb结构域的蛋白 Proteins containing the Myb domain | AtTRB1-3 | 拟南芥A.thaliana |
AtTBP1 | 拟南芥A.thaliana | |
AtTRFL2-10 | 拟南芥A.thaliana | |
CST 复合体蛋白 CST complex protein | AtStn1 | 拟南芥A.thaliana |
AtTEN1 | 拟南芥A.thaliana | |
AtCTC1 | 拟南芥A.thaliana |
蛋白 Protein | 物种 Species | DNA结合序列 DNA binding sequence | 调控端粒酶活性 Modulate telomerase activity | 结构域 Domain | 调控端粒长度 Modulate telomere length |
---|---|---|---|---|---|
POT1a | 拟南芥A.thaliana | 未知Unknown | 正向Positive | OB | 延长Extension |
POT1b | 拟南芥A.thaliana | 未知Unknown | 反向Negative | OB | 缩短Shorten |
POT1c | 拟南芥A.thaliana | 未知Unknown | 未知Unknown | OB | 未知Unknown |
POT1 | 小立碗藓Physcomitrella patens | GTTTAGGGTTTAGGGT | 无调控Unaffected | OB | 延长Extension |
POT1 | 油松Pinus tabuliformis | TTAGGGTTT | 未知Unknown | OB | 未知Unknown |
STEP1 | 拟南芥A.thaliana | (TTTAGGG)3 | 反向Negative | RBD | 缩短Shorten |
WHY1 | 拟南芥A.thaliana | (TTTAGGG)4 | 反向Negative | Whirly | 缩短Shorten |
WHY1 | 马铃薯Solanum tuberosum | (TTTAGGG)4 | 反向Negative | Whirly | 缩短Shorten |
GTBP | 烟草N.tabacum | (TTTAGGG)3 | 未知Unknown | RRM | 未知Unknown |
Table 2 Telomere single-stranded DNA-binding proteins
蛋白 Protein | 物种 Species | DNA结合序列 DNA binding sequence | 调控端粒酶活性 Modulate telomerase activity | 结构域 Domain | 调控端粒长度 Modulate telomere length |
---|---|---|---|---|---|
POT1a | 拟南芥A.thaliana | 未知Unknown | 正向Positive | OB | 延长Extension |
POT1b | 拟南芥A.thaliana | 未知Unknown | 反向Negative | OB | 缩短Shorten |
POT1c | 拟南芥A.thaliana | 未知Unknown | 未知Unknown | OB | 未知Unknown |
POT1 | 小立碗藓Physcomitrella patens | GTTTAGGGTTTAGGGT | 无调控Unaffected | OB | 延长Extension |
POT1 | 油松Pinus tabuliformis | TTAGGGTTT | 未知Unknown | OB | 未知Unknown |
STEP1 | 拟南芥A.thaliana | (TTTAGGG)3 | 反向Negative | RBD | 缩短Shorten |
WHY1 | 拟南芥A.thaliana | (TTTAGGG)4 | 反向Negative | Whirly | 缩短Shorten |
WHY1 | 马铃薯Solanum tuberosum | (TTTAGGG)4 | 反向Negative | Whirly | 缩短Shorten |
GTBP | 烟草N.tabacum | (TTTAGGG)3 | 未知Unknown | RRM | 未知Unknown |
1 | Greider C W. Telomere length regulation. Annual Review of Biochemistry, 1996, 65(1): 337-365. |
2 | Harrington L. Making the most of a little: dosage effects in eukaryotic telomere length maintenance. Chromosome Research, 2005, 13(5): 493-504. |
3 | Kilian A, Kleinhofs A, Stiff C. Barley telomeres shorten during differentiation but grown in callus culture. Proceedings of the National Academy of Sciences, 1995, 92(21): 9555-9559. |
4 | Blasco M A. The epigenetic regulation of mammalian telomeres. Nature Reviews Genetics, 2007(8): 299-309. |
5 | Flanary B E, Kletetschk A G. Analysis of telomere length and telomerase activity in tree species of various lifespans, and with age in the bristlecone pine Pinus longaeva. Biogerontology, 2005, 6(2): 101-111. |
6 | Liu D, Song H, Li F L, et al. Advances in telomeres and telomerase in plants. Journal of Beijing Forestry University, 2010, 32(5): 163-167. |
刘頔, 宋涵, 李凤兰, 等. 植物端粒与端粒酶研究进展. 北京林业大学学报, 2010, 32(5): 163-167. | |
7 | Bucholc M, Buchowicz J. Synthesis of extrachromosomal DNA and telomere-related sequences in germinating wheat embryos. Seed Science Research, 1992, 2(3): 141-146. |
8 | Donà M, Balestrazzi A, Mondoni A, et al. DNA profiling, telomere analysis and antioxidant properties as tools for monitoring exsitu seed longevity. Annals of Botany, 2013, 111(5): 987-998. |
9 | Fajkus P, Peska V, Sitova Z, et al. Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. The Plant Journal, 2016, 85(3): 337-347. |
10 | Loayza D, Lange T D. POT1 as a terminal transducer of TRF1 telomere length control. Nature, 2003, 423(6943): 1013-1018. |
11 | Dickey T H, Altschuler S E, Wuttke D S. Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure, 2013, 21(7): 1074-1084. |
12 | Nugent C I, Hughes T R, Lue N F, et al. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science, 1996(272): 249-252. |
13 | Meng F L, Hu Y, Shen N, et al. Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. Embo Journal, 2014, 28(10): 1466-1478. |
14 | Hosseini A, Alipour A, Baradaran R V, et al. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. BioFactors, 2023, 49(2): 322-350. |
15 | Petracek M E, Konkel L M, Kable M L, et al. A chlamydomonas protein that binds single-stranded G-strand telomere DNA. The Embo Journal, 1994, 13(15): 3648-3658. |
16 | Ford L P, Wrigh W E, Shay J W, et al. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene, 2002(21): 580-583. |
17 | Dallaire F, Dupuis S, Chabot B, et al. Heterogeneous nuclear ribonucleoprotein A1 and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. Journal of Biological Chemistry, 2000, 275(19): 14509-14516. |
18 | Kim M K, Kim W T. Telomere structure, function, and maintenance in plants. Journal of Plant Biology, 2018, 61: 131-136. |
19 | Agrawal V, Radha K K V. OB-fold: Growing bigger with functional consistency. Current Protein and Peptide Science, 2003, 4(3): 195-206. |
20 | Pandita T K. Critical role of the POT1 OB domain in maintaining genomic stability. Oncogene, 2016(36): 1908-1910. |
21 | Podell E R, Cech T R, Lei M. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nature Structural & Molecular Biology, 2004, 11(12): 1223-1229. |
22 | Nandakumar J, Podell E R, Lange C. How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proceedings of the National Academy of Sciences, 2010, 107(2): 651-656. |
23 | Amit A, Beilstein M A, Shippen D E. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation. Nucleic Acids Research, 2016, 44(20): 9821-9830. |
24 | Luo M, Teng X, Wang B, et al. Protection of telomeres 1 (POT1) of Pinus tabuliformis bound the telomere ssDNA. Tree Physiology, 2019, 40(1): 119-127. |
25 | Pennock E, Buckley K, Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell, 2001, 104(3): 387-396. |
26 | Paeschke K, Juranek S, Simonsson T, et al. Telomerase recruitment by the telomere end binding protein-b facilitates g-quadruplex DNA unfolding in ciliates articles. Nature Structural & Molecular Biology, 2008, 15(6): 598-604. |
27 | Baumann P. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science, 2001, 292(5519): 1171-1175. |
28 | Hosokawa K, MacArthur B D, Ikushima Y M, et al. The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age. Nature Communications, 2017(8): 804. |
29 | Savage S A. Human telomeres and telomere biology disorders. Progress in Molecular Biology and Translational Science, 2014(125): 41-66. |
30 | Shakirov E V, Song X, Joseph J A, et al. POT1 proteins in green algae and land plants: DNA-binding properties and evidence of co-evolution with telomeric DNA. Nucleic Acids Research, 2009, 37(22): 7455-7467. |
31 | Shakirov E V, Perroud P F, Nelson A D, et al. Protection of telomeres 1 is required for telomere integrity in the moss Physcomitrella patens. Plant Cell, 2010, 22(6): 1838-1848. |
32 | Desveaux D, Subramaniam R, Després C, et al. A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Developmental Cell, 2004, 6(2): 229-240. |
33 | Yoo H H, Kwon C, Lee M M, et al. Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant Journal, 2007(49): 442-451. |
34 | Janack B, Sosoi P, Kruinska K, et al. Knockdown of WHIRLY1 affects drought stress-induced leaf senescence and histone modifications of the senescence associated gene HvS40. Plants, 2016, 5(3): 37. |
35 | Desveaux D, Maréchal A, Brisson N. Whirly transcription factors: defense gene regulation and beyond. Trends in Plant Science, 2005, 10(2): 95-102. |
36 | Miao Y, Jiang J, Zhao R Z. The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Plant Physiology, 2013, 163(2): 746-756. |
37 | Desveaux D, Allard J, Brisson N, et al. A new family of plant transcription factors displays a novel ssDNA-binding surface. Nature Structural Biology, 2002, 9(7): 512-517. |
38 | Charles D, Subramaniam R, Brisson M N. The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. The Plant Cell, 1995, 7(5): 589-598. |
39 | Subramaniam R, Charles D, Normand B. A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato. The Plant Cell, 1997, 9(4): 653-664. |
40 | Kwon C, Chung I K. Interaction of an Arabidopsis RNA-binding protein with plant single-stranded telomeric DNA modulates telomerase activity. Journal of Biological Chemistry, 2004, 279(13): 12812-12818. |
41 | Yoo H H, Kwon C, Chung I K. An Arabidopsis splicing RNP variant STEP1 regulates telomere length homeostasis by restricting access of nuclease and telomerase. Molecules & Cells, 2010, 30(3): 279-283. |
42 | Ding J, Hayashi M K, Zhang Y, et al. Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes & Development, 1999, 13(9): 1102-1115. |
43 | Yong W L, Kim W T. Tobacco GTBP1, a homolog of human heterogeneous nuclear ribonucleoprotein, protects telomeres from aberrant homologous recombination. Plant Cell, 2010, 22(8): 2781-2795. |
44 | Hirata Y, Suzuki C, Sakai S. Characterization and gene cloning of telomere-binding protein from tobacco BY-2 cells. Plant Physiology & Biochemistry, 2004, 42(1): 7-14. |
45 | Lee Y W, Kim W T. Telomerase-dependent 3′ G-strand overhang maintenance facilitates GTBP1-mediated telomere protection from misplaced homologous recombination. Plant Cell, 2013(4): 1329-1342. |
46 | Kwon C, Kwon K, Chung I K, et al. Characterization of single stranded telomeric DNA-binding proteins in cultured soybean (Glycine max) cells. Molecules & Cells, 2004, 17(3): 503-508. |
47 | Kim J H, Kim W T, Chung I K. Rice proteins that bind single-stranded G-rich telomere DNA. Plant Molecular Biology, 1998(36): 661-672. |
48 | Lee J H, Kim J H, Kim W T, et al. Characterization and developmental expression of single-stranded telomeric DNA-binding proteins from mung bean (Vigna radiata). Plant Molecular Biology, 2000, 42(4): 547-557. |
49 | Croy J E, Wuttke D S. Themes in ssDNA recognition by telomere-end protection proteins. Trends in Biochemical Sciences, 2006, 31(9): 516-525. |
50 | Aramburu T, Kelich J, Rice C, et al. POT1-TPP1 binding stabilizes POT1, promoting efficient telomere maintenance. Computational and Structural Biotechnology Journal, 2022, 20: 675-684. |
51 | Zimmer A, Lang D, Richardt S, et al. Dating the early evolution of plants: detection and molecular clock analyses of orthologs. Molecular Genetics & Genomics, 2007, 278(4): 393-402. |
52 | Shakirov E V, Surovtseva Y V, Osbun N, et al. The Arabidopsis Pot1 and Pot2 proteins function in telomere length homeostasis and chromosome end protection. Molecular & Cellular Biology, 2005, 25(17): 7725. |
53 | Beilstein M A, Renfrew K B, Song X, et al. Evolution of the telomere-associated protein Pot1a in Arabidopsis thaliana is characterized by positive selection to reinforce protein-protein interaction. Molecular Biology & Evolution, 2015(5): 1329-1341. |
54 | Horvath M P, Schweiker V L, Bevilacqua J M, et al. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell, 1998, 95(7): 963-974. |
55 | Peersen O B, Ruggles J A, Schultz S C, et al. Dimeric structure of the Oxytricha nova telomere end-binding protein α-subunit bound to ssDNA. Nature Structural Biology, 2002(9): 182-187. |
56 | Wojciechowski M, Fogolari F, Baginski M. Thermodynamic and electrostatic properties of ternary Oxytricha nova TEBP-DNA complex. Journal of Structural Biology, 2005, 152(3): 169-184. |
57 | Glustroma L W, Lyona K R, Paschinib M, et al. Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Proceedings of the National Academy of Sciences, 2018, 115(41): 10315-10320. |
58 | Horvath M P. Structural anatomy of telomere OB proteins. Critical Reviews in Biochemistry and Molecular Biology, 2011(46): 409-435. |
59 | Ay N, Irmler K, Fischer A, et al. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant Journal for Cell & Molecular Biology, 2010, 58(2): 333-346. |
60 | Chiodi I, Mondello C. Telomere-independent functions of telomerase in nuclei, cytoplasm, and mitochondria. Frontiers in Oncology, 2012, 2: 133. |
[1] | Shou-jiang SUN, Pei-sheng MAO, Li-ru DOU, Zhi-cheng JIA, Ming SUN, Wen MA, Cheng-ming OU, Juan WANG. Studies on the regulation of seed aging by reactive oxygen species and telomeres [J]. Acta Prataculturae Sinica, 2023, 32(8): 202-213. |
[2] | SUN Shou-jiang, SHI Shang-li, WU Zhao-lin, HE Li-juan, JIN Xin, QI Juan. Effects of kinetin on telomerase activity and physiological characteristics of Elymus sibiricus seedings under salt stress [J]. Acta Prataculturae Sinica, 2018, 27(11): 87-94. |
[3] | ZHANG Hai-na, GU Jun-tao, GUO Cheng-jin, LI Cun-dong, XIAO Kai. The basis of molecular biology of senescence in plants [J]. Acta Prataculturae Sinica, 2009, 18(1): 155-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||