Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (5): 69-76.DOI: 10.11686/cyxb20140508
• Orginal Article • Previous Articles Next Articles
FAN Jiang-wen,ZHANG Liang-xia,ZHANG Wen-yan,ZHONG Hua-ping
Received:
2013-09-13
Online:
2014-10-20
Published:
2014-10-20
CLC Number:
FAN Jiang-wen,ZHANG Liang-xia,ZHANG Wen-yan,ZHONG Hua-ping. Plant root N and P levels and their relationship to geographical and climate factors in a Chinese grassland transect[J]. Acta Prataculturae Sinica, 2014, 23(5): 69-76.
Reference: [1] Vitousek P. Nutrient cycling and nutrient use efficiency[J]. American Naturalist, 1982, 119: 553-572.[2] Chapin III F S, Matson P P A. Principles of Terrestrial Ecosystem Ecology[M]. Springer, 2011: 298.[3] Giardina C P, Ryan M G. Biogeochemistry: Soil warming and organic carbon content reply[J]. Nature, 2000, 408: 789-790.[4] Dag O Hessen, G ran I gren, Thomas R, et al. Carbon sequestration in ecosystems: the role of stoichiometry[J]. Ecology, 2004, 85: 1179-1192[5] Hobbie S E, Nadelhoffer K J, H gberg P. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions[J]. Plant and Soil, 2002, 242: 163-170.[6] Yang K, Huang J K, Dong D, et al. Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 17-22.[7] McGroddy M E, Daufresne T, Hedin L O. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of terrestrial Redfield type ratios[J]. Ecology, 2004, 85(9): 2390-2401.[8] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006.[9] Yang H M, Wang D M. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors[J]. Acta Prataculturae Sinica, 2011, 20(2): 244.[10] Li J H, Li Z Q, Wang G. Effect of different grazing intensities on the nutrient contents of Artemisia frigida and Potentilla acaulis[J]. Acta Prataculturae Sinica, 2003, 12(6): 30-35.[11] Wang C T, Wang Q L, Jing Z C, et al. Vegetation roots and soil physical and chemical characteristic changes in Kobresia pygmaca meadow under different grazing gradients[J]. Acta Prataculturae Sinica, 2008, 17(5): 9-15.[12] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385.[13] Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Chinese Journal of Environmental Science, 2007, 28(12): 2665-2673.[14] He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122.[15] He J S, Wang L, Flynn D F, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155(2): 301-310.[16] Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland[J]. Journal of Plant Ecology, 2006, 30(4): 553-562.[17] Hu Z M, Fan J W, Zhong H P, et al. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland[J]. Science in China Series D: Earth Sciences, 2007, 50(5): 754-764.[18] Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass[J]. Climatic Change, 2008, 86(34): 375-396.[19] Fan J W, Wang K, Harris W, et al. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia[J]. Journal of Arid Environments, 2009, 73(4): 521-528.[20] Hu Z M, Yu G R, Fan J W, et al. Precipitation-use efficiency along a 4500-km grassland transect[J]. Global Ecology and Biogeography, 2010, 19: 842-851.[21] Zhang W Y, Fan J W, Zhong H P, et al. The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China[J]. Acta Agrectir Sinica, 2010, 18(4): 503-509.[22] Zhou Y C, Fan J W, Zhang W Y, et al. Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai Tibet Plateau, China[J]. Alpine Botany, 2011, 121(2): 79-90.[23] Zhou Y C, Fan J W, Zhong H P, et al. Relationships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai-Tibet Plateau[J]. Science China: Earth Sciences, 2013, 56(2): 311-320.[24] Wang S Q, Fan J W, Song M H, et al. Patterns of SOC and soil 13 C and their relations to climatic factors and soil characteristics on the Qinghai-Tibetan Plateau[J]. Plant Soil, 2013, 363: 243-255.[25] Department of Agriculture, National animal husbandry and veterinary station. China grassland resources[M]. Beijing: China Science and Technology Press, 1996.[26] 1:100 million Chinese map of grassland resources Establishment Committee. 1:100 million Chinese Grassland Resource Atlas[M]. Beijing: China Cartographic Publishing House, 1993.[27] Zheng S X, Shangguan Z P. The space distribution pattern of plant leaves nutrient composition in Loess Plateau region[J]. Progress in Natural Science, 2006, 16(8): 965-973.[28] Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136(4): 679-689.[29] Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.[30] Koerselman W, Meuleman A F. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.[31] Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6): 636-642.[32] Braakhekke W G, Hooftman D A. The resource balance hypothesis of plant species diversity in grassland[J]. Journal of Vegetation Science, 1999, 10(2): 187-200.[33] National Soil Survey Office. Chinese soil types Zhi (Vol. I)[M]. Beijing: China Agriculture Press, 1993.[34] Zhang C, Tian H Q, Liu J Y, et al. Pools and distributions of soil phosphorus in China[J]. Global Biogeochemical Cycles, 2005, 19, GB1020, doi:10.1029/2004GB002296. 参考文献:[1] Vitousek P. Nutrient cycling and nutrient use efficiency[J]. American Naturalist, 1982, 119: 553-572.[2] Chapin III F S, Matson P P A. Principles of Terrestrial Ecosystem Ecology[M]. Springer, 2011: 298.[3] Giardina C P, Ryan M G. Biogeochemistry: Soil warming and organic carbon content reply[J]. Nature, 2000, 408: 789-790.[4] Dag O Hessen, Gran I gren, Thomas R, et al. Carbon sequestration in ecosystems: the role of stoichiometry[J]. Ecology, 2004, 85: 1179-1192[5] Hobbie S E, Nadelhoffer K J, Hgberg P. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions[J]. Plant and Soil, 2002, 242: 163-170.[6] 杨阔, 黄建辉, 董丹, 等. 青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J]. 植物生态学报, 2010, 34(1): 17-22.[7] McGroddy M E, Daufresne T, Hedin L O. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85(9): 2390-2401.[8] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006.[9] 杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J]. 草业学报, 2011, 20(2): 244.[10] 李金花, 李镇清, 王刚. 不同放牧强度对冷蒿和星毛委陵菜养分含量的影响[J].草原学报, 2003, 12(6): 30-35.[11] 王长庭, 王启兰, 景增春, 等.不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化[J]. 草业学报, 2008, 17(5): 9-15.[12] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385.[13] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654 种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665-2673.[14] He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122.[15] He J S, Wang L, Flynn D F, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155(2): 301-310.[16] 韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究[J]. 植物生态学报, 2006, 30(4): 553-562.[17] Hu Z M, Fan J W, Zhong H P, et al. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland[J]. Science in China Series D: Earth Sciences, 2007, 50(5): 754-764.[18] Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass[J]. Climatic Change, 2008, 86(3-4): 375-396.[19] Fan J W, Wang K, Harris W, et al. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia[J]. Journal of Arid Environments, 2009, 73(4): 521-528.[20] Hu Z M, Yu G R, Fan J W, et al. Precipitation-use efficiency along a 4500-km grassland transect[J]. Global Ecology and Biogeography, 2010, 19: 842-851.[21] 张文彦, 樊江文, 钟华平, 等. 中国典型草原优势植物功能群氮磷化学计量学特征研究[J]. 草地学报, 2010, 18(4): 503-509.[22] Zhou Y C, Fan J W, Zhang W Y, et al. Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau, China[J]. Alpine Botany, 2011, 121(2): 79-90.[23] Zhou Y C, Fan J W, Zhong H P, et al. Relationships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai-Tibet Plateau[J]. Science China: Earth Sciences, 2013, 56(2): 311-320.[24] Wang S Q, Fan J W, Song M H, et al. Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai-Tibetan Plateau[J]. Plant Soil, 2013, 363: 243-255.[25] 农业部, 全国畜牧兽医总站. 中国草地资源[M]. 北京: 中国科学技术出版社, 1996.[26] 1∶100万中国草地资源图编制委员会. 1∶100万中国草地资源图集[M]. 北京: 中国地图出版社, 1993.[27] 郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展, 2006, 16(8): 965-973.[28] Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136(4): 679-689.[29] Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.[30] Koerselman W, Meuleman A F. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.[31] Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6): 636-642.[32] Braakhekke W G, Hooftman D A. The resource balance hypothesis of plant species diversity in grassland[J]. Journal of Vegetation Science, 1999, 10(2): 187-200.[33] 全国土壤普查办公室. 中国土种志(第一卷)[M]. 北京: 中国农业出版社, 1993.[34] Zhang C, Tian H Q, Liu J Y, et al. Pools and distributions of soil phosphorus in China[J]. Global Biogeochemical Cycles, 2005, 19, GB1020, doi:10.1029/2004GB002296. |
[1] | ZHAO Ling,YANG Qing,AN Sha-zhou. Numerical simulation analysis on the impact of change in rangeland vegetation type on climate in the Tianshan Mountains using a Regional Climate Model [J]. Acta Prataculturae Sinica, 2014, 23(3): 51-61. |
[2] | WANG Wei, HUANG Xiao-dong, LV Zhi-bang, LIANG Tian-gang. A study on snow mapping in the Tibetan Plateau based on MODIS and AMSR-E data [J]. Acta Prataculturae Sinica, 2013, 22(4): 227-238. |
[3] | ZHANG Cun-hou, WANG Ming-jiu, ZHANG Li, YANG Li-Ping. Response of meadow steppe ANPP to climate change in Hulunbeir, Inner Mongolia - a simulation study [J]. Acta Prataculturae Sinica, 2013, 22(3): 41-. |
[4] | ZHOU Wei, WANG Qian, ZHANG Chao-bin, LI Jian-long. Spatiotemporal variation of grassland vegetation NDVI in the middle and upper reaches of the Hei River and its response to climatic factors [J]. Acta Prataculturae Sinica, 2013, 22(1): 138-147. |
[5] | LI Xi-liang, HOU Xiang-yang, Leonid Ubugunov, DING Yong, DING Wen-qiang, YIN Yan-ting, YUN Xiang-jun, ZHANG Yong. Effects of climate change on household compound ecosystems and herders’ adaptation [J]. Acta Prataculturae Sinica, 2013, 22(1): 148-156. |
[6] | CHANG Zhao-feng, HAN Fu-gui, ZHONG Sheng-nian. Response of grassland vegetation to climate warming in the Minqin area [J]. Acta Prataculturae Sinica, 2012, 21(3): 213-222. |
[7] | WEN Shu-jun, ZHANG Shi-ting, LI Wei, DU Guo-zhen. The differences of seed rain between typical and swamp meadows on the eastern Tibetan Plateau [J]. Acta Prataculturae Sinica, 2012, 21(2): 256-263. |
[8] | REN Ji-zhou, LIANG Tian-gang, LIN Hui-long, FENG Qi-sheng, HUANG Xiao-dong, HOU Fu-jiang, ZOU De-fu, WANG Chong. Study on grassland’s responses to global climate change and its carbon sequestration potentials [J]. Acta Prataculturae Sinica, 2011, 20(2): 1-22. |
[9] | SUN Hui-lan, LI Wei-hong, XU Yuan-jie, AYOUPU Mubareke, CHEN Ya-peng. Climate-productivity of grassland and its response to climate change in Ili River Basin, Xinjiang, China [J]. Acta Prataculturae Sinica, 2010, 19(6): 55-61. |
[10] | ZHOU Kan-she, DU Jun, YUAN Lei, MA Peng-fei, LIU Yi-lan. Responses of climatic potential grassland productivity to climatic change in an alpine meadow area over the Nujiang Basin, Tibet from 1980 to 2008 [J]. Acta Prataculturae Sinica, 2010, 19(5): 17-24. |
[11] |
GONG Yan-ming, HU Yu-kun, ADELI Mai-dil, LI Kai-hui, YIN Wei, ZHANG Wei, WANG Ji-yun. Analysis of adaptation of a climate productivity model on alpine grassland [J]. Acta Prataculturae Sinica, 2010, 19(2): 7-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||