Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (4): 49-60.DOI: 10.11686/cyxb20140406
• Orginal Article • Previous Articles Next Articles
ZHENG Yi-qi1,2,GUO Yan1,FANG Shu-juan1,XU Ya-nan1,CHEN Jing-bo2,LIU Jian-xiu2
Received:
2014-03-24
Online:
2014-08-20
Published:
2014-08-20
CLC Number:
ZHENG Yi-qi,GUO Yan,FANG Shu-juan,XU Ya-nan,CHEN Jing-bo,LIU Jian-xiu. Constructing pre-core collection of Cynodon dactylon based on phenotypic data[J]. Acta Prataculturae Sinica, 2014, 23(4): 49-60.
Reference:[1]Frankel O H, Brown A H D. Current Plant Genetic Resources a Critical Appraisal[M]. New Delhi(India): Oxford and IBH Publishing, 1984.[2]Brown A H D. Core collection: A practical approach to genetic resources management[J]. Genome, 1989, 31: 818-824.[3]Han C Y, Dong Y C, Wang L F, et al. The construction of common wheat core collection and the analysis of genetic diversity in our country[J]. Chinese Science Bulletin, 2008, 53(8): 908-915.[4]Xu N, Cheng X Z, Wang S H, et al. Establishment of an adzuki bean (Vigna angularis) core collection based on geographical distribution and phenotypic data in China[J]. Acta Agronomica Sinica, 2008, 34(8): 1366-1373.[5]Li Z C, Zhang H L, Zeng Y W, et al. Studies on sampling schemes for the establishment of core collection of rice landraces in Yunnan[J]. Genetic Resources and Crop Evolution, 2002, 49: 67-74.[6]Li G Q, Li X X, Shen D, et al. Studies on the methods of constructing Chinese cabbage core germplasm based on the morphological data[J]. Acta Horticulturae Sinica, 2008, 35(12): 1759-1766.[7]Hu J, Zhu J, Xu H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theoretical and Applied Genetics, 2000, 101: 264-268.[8]Wang J C, Hu J, Zhang C F, et al. Evaluating parameters of rice core collections based on genotypic values and molecular marker information[J]. Chinese Journal of Rice Science, 2007, 21(1): 51-58. [9]Liu Z C, Zhang C Y, Zhang Y M, et al. Study on method of constructing core collection of malus sieversii based on quantitative traits[J]. Scientia Agricultura Sinica, 2010, 43(2): 358-370. [10]Ortiz R, Ruia Tapia E N, Mijica Sanchez A. Sampling strategy for a core collection of Peruvian quinoa germplasm[J]. Theoretical and Applied Genetics, 1998, 96: 475-483.[11]Charmer G, Balfourier F. The use of geostatistics for sampling a core collection of perennial ryegrass populations[J]. Genetic Resources and Crop Evolution, 1995, 42: 303-309.[12]Basigalup D H, Barnes D K, Stucker R E. Development of a core collection for perennial Medicago plant introductions[J]. Crop Science, 1995, 35(4): 1163-1168.[13]Diwan N, McIntosh M S, Bauchan G R. Methods of developing a core collection of annual Medicago species[J]. Theoretical and Applied Genetics, 1995, 90: 755-761.[14]Anderson W F. Development of a forage bermudagrass (Cynodon sp.) core collection[J]. Grassland Science, 2005, 51: 305-308.[15]Harlan J R. Sources of variation in Cynodon dactylon (L.) Pers.[J]. Crop Science, 1969, 9: 774-778.[16]Rochecouste E. Studies on the biotypes of Cynodon dactylon L. botanical investigation[J]. Weed Research, 1962, 2: 1-23.[17]Harlan J R, de Wet J M J, Rawal K M. Origin and distribution of the seleucidus race of Cynodon dactylon L. Pers. var. dactylon (Gramineae)[J]. Euphytica, 1970, 19: 465-469.[18]Wu R R, Lu X S. Chinese tropical and subtropical forage germplasm[M]. Beijing:China Science and Technology Publishing, 1992.[19]Liu J X, He S A, Liu Y D, et al. Taxonomy of Cynodon dactylon types in east China and their turfgrass quality[J]. Journal of Plant Resources and Environment, 1996, 15(3): 18-22.[20]Liu J X, Guo A G, Guo H L. Morphological variation and types of Cynodon dactylon[J]. Acta prataculturae Sinica, 2003, 12(6): 99-104.[21]Zhang X A, Zhang X Q. Study on the morphological characteristics of native wild Cynodon dactylon in southwestern region of China[J]. Grassland and Turf, 2006, 3: 35-38.[22]Huang C Q, Zhou S Y, Liu G D, et al. A study on morphological variations of Cynodon dactylon in south China[J]. Acta prataculturae Sinica, 2010, 19(5): 210-217.[23]Zhang Y H, A B L T, Li P Y. Study on morphological diversity of Xinjiang wild bermudagrass[J]. Journal of Xinjiang Agricultural University, 2011, 34(1): 6-11.[24]Huang C Q, Liu G D, Bai C H, et al. A study on the morphological diversity of 475 accessions of Cynodon dactylon[J]. Acta Prataculturae Sinica, 2012, 21(4): 33-42.[25]Wu Y Q, Taliaferro C M, Bai G H, et al. AFLP analysis of Cynodon dactylon(L.) Pers. var. dactylon genetic variation[J]. Genome, 2004, 47: 689-696.[26]Wu Y Q, Taliaferro C M, Bai G H, et al. Genetic analysis of Chinese Cynodon accessions by flow cytometry and AFLP markers[J]. Crop Science, 2006, 46(2): 917-926.[27]Liu W, Zhang X Q, Li F, et al. Genetic diversity of bermudagrass accessions in south-west China by ISSRs molecular markers and geographic provenance[J]. Acta Prataculturae Sinica, 2007, 16(3): 55-61.[28]Yi Y J, Zhang X Q, Huang L K, et al. Genetic diversity of wild Cynodon dactylon germplasm detected by SRAP markers[J].Hereditas, 2008, 30(1): 94-100.[29]Wang Z Y, Yuan X J, Zheng Y Q, et al. Molecular identification and genetic analysis for 24 turf type Cynodon cultivars by sequence-related amplified polymorphism markers[J]. Scientia Horticulturae, 2009, 122: 461-467.[30]Liang H M. Analysis on different populations of Cynodon dactylon by RAPD[J]. Acta Prataculturae Sinica, 2010, 19(1): 258-262.[31]ling Y, Zhang X Q, Qi X F, et al. Genetic diversity of wild Cynodon dactylon germplasm from five province of Southwest China and Africa detected by SRAP markers[J]. Acta Prataculturae Sinica, 2010, 19(2): 196-203.[32]Qi X F, Zhang X Q, Ling Y, et al. Genetic diversity of wild Cynodon dactylon germplasm detected by AFLP markers[J]. Acta Prataculturae Sinica, 2010, 19(3): 155-161.[33]Huang C Q, Liu G D, Bai C J, et al. Estimation of genetic variation in Cynodon dactylon accessions using the ISSR technique[J]. Biochemical Systematics and Ecology, 2010, 38: 993-999.[34]Li H Y, Liu L, Lou Y H, et al. Genetic diversity of Chinese natural bermudagrass (Cynodon dactylon) germplasm using ISSR markers[J]. Scientia Horticulturae, 2011, 127: 555-561.[35]Liu J, Zhao Q, Yang Z M. ISSR molecular markers analysis of 9 Bermudagrass cultivation varieties[J]. Acta Prataculturae Sinica, 2012, 21(6): 159-165.[36]Zhang Y H, Pa T G L, Li J H, et al. SSR Analyses of different bermudagrass populations[J]. Acta Agrectir Sinica, 2013, 21(3): 598-606.[37]Xu H M, Qiu Y X, Hu J, et al. Methods of constructing core collection of crop germplasm by comparing different genetic distances,dluster methods and sampling strategies[J]. Acta Agronomica Sinica, 2004, 30(9): 932-936.[38]Li Z C, Zhang H L, Zeng Y W, et al. Study on sampling schemes of core collection of local varieties of rice in Yunnan,China[J]. Scientia Agricultura Sinica, 2000, 33(5): 1-7.[39]Yu P, Li Z C, Zhang H L, et al. Sampling strategy of primary core collection of common wild rice (Oryza rufipogon Griff.) in China[J]. Journal of China Agricultural University, 2003, 8(5): 37 41.[40]Qi Y W, Fan L N, Luo Q W, et al. Establishment of saccharum spontaneum L.core collections[J]. Acta Agronomica Sinica, 2013, 39(4): 649-656.[41]Spagnoletti Z P L, Qualset C O. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat[J]. Theoretical and Applied Genetics, 1993, 87: 295-304.[42]Brown A H D. The case for core collections[A]. In: Brown A H D, Frankel O H, Marshall R D, et al. The Use of Plant Genetic Resources[M]. Cambridge, England: Cambridge University Press, 1989: 136-156.[43]Spagnoletti Z P L, Qualset C O. Geographical diversity for quantitative spike characters in a world collection of durum wheat[J]. Crop Science, 1987, 27: 235-241.[44]Liu C Y, Wang S H, Wang L X, et al. Establishment of candidate core collection in Chinese mungbean germplasm resources[J]. Acta Agronomica Sinica, 2008, 34(4): 700-705.[45]Ma H W, Yin Y B, Wang X, et al. Study on method of constructing core collection of japonica based on quantitative traits[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(11): 7-14.[46]Xu H M, Mei Y J, Hu J, et al. Sampling a core collection of Island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits[J]. Genetic Resources and Crop Evolution, 2006, 53: 515-521.[47]Xu H M, Hu J, Qiu Y X. Study on constructing core collection based on plant molecular markers and quantitative traits[J]. Journal of Biomathematics, 2005, 20(3): 351-355.参考文献:[1]Frankel O H, Brown A H D. Current Plant Genetic Resources a Critical Appraisal[M]. New Delhi(India): Oxford and IBH Publishing, 1984.[2]Brown A H D. Core collection: A practical approach to genetic resources management[J]. Genome, 1989, 31: 818-824.[3]郝晨阳, 董玉琛, 王兰芬, 等. 我国普通小麦核心种质的构建及遗传多样性分析[J]. 科学通报, 2008, 53(8): 908-915.[4]徐宁, 程须珍, 王素华, 等. 以地理来源分组和利用表型数据构建中国小豆核心种质[J]. 作物学报, 2008, 34(8): 1366-1373.[5]Li Z C, Zhang H L, Zeng Y W, et al. Studies on sampling schemes for the establishment of core collection of rice landraces in Yunnan[J]. Genetic Resources and Crop Evolution, 2002, 49: 67-74.[6]李国强, 李锡香, 沈镝, 等. 基于形态数据的大白菜核心种质构建方法的研究[J].园艺学报, 2008, 35(12): 1759-1766.[7]Hu J, Zhu J, Xu H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theoretical and Applied Genetics, 2000, 101: 264-268.[8]王建成, 胡晋, 张彩芳, 等. 建立在基因型值和分子标记信息上的水稻核心种质评价参数[J]. 中国水稻科学, 2007, 21(1): 51-58. [9]刘遵春, 张春雨, 张艳敏, 等. 利用数量性状构建新疆野苹果核心种质的方法[J].中国农业科学, 2010, 43(2): 358-370. [10]Ortiz R, Ruia-Tapia E N, Mijica-Sanchez A. Sampling strategy for a core collection of Peruvian quinoa germplasm[J]. Theoretical and Applied Genetics, 1998, 96: 475-483.[11]Charmer G, Balfourier F. The use of geostatistics for sampling a core collection of perennial ryegrass populations[J]. Genetic Resources and Crop Evolution, 1995, 42: 303-309.[12]Basigalup D H, Barnes D K, Stucker R E. Development of a core collection for perennial Medicagoplant introductions[J]. Crop Science, 1995, 35(4): 1163-1168.[13]Diwan N, McIntosh M S, Bauchan G R. Methods of developing a core collection of annual Medicagospecies[J]. Theoretical and Applied Genetics, 1995, 90: 755-761.[14]Anderson W F. Development of a forage bermudagrass (Cynodonsp.) core collection[J]. Grassland Science, 2005, 51: 305-308.[15]Harlan J R. Sources of variation in Cynodon dactylon(L.) Pers. [J]. Crop Science, 1969, 9: 774-778.[16]Rochecouste E. Studies on the biotypes of Cynodon dactylon L. botanical investigation[J]. Weed Research, 1962, 2: 1-23.[17]Harlan J R, de Wet J M J, Rawal K M. Origin and distribution of the seleucidus race of Cynodon dactylon L. Pers. var. dactylon(Gramineae)[J]. Euphytica, 1970, 19: 465-469.[18]吴仁润, 卢欣石. 中国热带亚热带牧草种质资源[M]. 北京: 中国科技出版社, 1992.[19]刘建秀, 贺善安, 刘永东, 等. 华东地区狗牙根形态分类及其坪用价值[J]. 植物资源与环境, 1996, 15(3): 18-22.[20]刘建秀, 郭爱桂, 郭海林. 我国狗牙根种质资源形态变异及形态类型划分[J]. 草业学报, 2003, 12(6): 99-104.[21]张小艾, 张新全. 西南区野生狗牙根形态多样性研究[J]. 草原与草坪, 2006, 3: 35-38.[22]黄春琼, 刘国道, 周少云, 等. 华南地区野生狗牙根植物学形态特征变异研究[J]. 草业学报, 2010, 19(5): 210-217.[23]张延辉, 阿不来提, 李培英. 新疆野生狗牙根形态多样性研究[J]. 新疆农业大学学报, 2011, 34(1): 6-11.[24]黄春琼, 刘国道, 白昌军, 等. 475份狗牙根种质资源形态多样性的研究[J]. 草业学报, 2012, 21(4): 33-42.[25]Wu Y Q, Taliaferro C M, Bai G H, et al. AFLP analysis of Cynodon dactylon(L.) Pers. var. dactylongenetic variation[J]. Genome, 2004, 47: 689-696.[26]Wu Y Q, Taliaferro C M, Bai G H, et al. Genetic analysis of Chinese Cynodonaccessions by flow cytometry and AFLP markers[J]. Crop Science, 2006, 46(2): 917-926.[27]刘伟, 张新全, 李芳, 等. 西南区野生狗牙根遗传多样性的ISSR标记与地理来源分析[J]. 草业学报, 2007, 16(3): 55-61.[28]易杨杰, 张新全, 黄琳凯, 等. 野生狗牙根种质遗传多样性的SRAP研究[J].遗传, 2008, 30(1): 94-100.[29]Wang Z Y, Yuan X J, Zheng Y Q, et al. Molecular identification and genetic analysis for 24 turf-type Cynodoncultivars by sequence-related amplified polymorphism markers[J]. Scientia Horticulturae, 2009, 122: 461-467.[30]梁慧敏. 不同居群狗牙根RAPD分析[J]. 草业学报, 2010, 19(1): 258-262.[31]凌瑶, 张新全, 齐晓芳, 等. 西南五省区及非洲野生狗牙根种质基于SRAP标记的遗传多样性分析[J]. 草业学报, 2010, 19(2): 196-203.[32]齐晓芳, 张新全, 凌瑶, 等. 野生狗牙根种质资源的AFLP遗传多样性分析[J]. 草业学报, 2010, 19(3): 155-161.[33]Huang C Q, Liu G D, Bai C J, et al. Estimation of genetic variation in Cynodon dactylonaccessions using the ISSR technique[J]. Biochemical Systematics and Ecology, 2010, 38: 993-999.[34]Li H Y, Liu L, Lou Y H, et al. Genetic diversity of Chinese natural bermudagrass (Cynodon dactylon) germplasm using ISSR markers[J]. Scientia Horticulturae, 2011, 127: 555-561.[35]刘君, 赵琴, 杨志民. ISSR分子标记对9种狗牙根的鉴定分析[J]. 草业学报, 2012, 21(6): 159-165.[36]张延辉, 帕提古丽, 李江华, 等. 不同居群野生狗牙根材料的SSR分析[J]. 草业学报, 2013, 21(3): 598-606.[37]徐海明, 邱英雄, 胡晋, 等. 不同遗传距离聚类和抽样方法构建作物核心种质的比较[J]. 作物学报, 2004, 30(9): 932-936.[38]李自超, 张洪亮, 曾亚文, 等. 云南地方稻种资源核心种质取样方案研究[J]. 中国农业科学, 2000, 33(5): 1-7.[39]余萍, 李自超, 张洪亮, 等. 中国普通野生稻初级核心种质取样策略[J]. 中国农业大学学报, 2003, 8(5): 37-41.[40]齐永文, 樊丽娜, 罗青文, 等. 甘蔗细茎野生种核心种质构建[J]. 作物学报, 2013, 39(4): 649-656.[41]Spagnoletti Z P L, Qualset C O. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat[J]. Theoretical and Applied Genetics, 1993, 87: 295-304.[42]Brown A H D. The case for core collections[A]. In: Brown A H D, Frankel O H, Marshall R D, et al. The Use of Plant Genetic Resources[M]. Cambridge, England: Cambridge University Press, 1989: 136-156.[43]Spagnoletti Z P L, Qualset C O. Geographical diversity for quantitative spike characters in a world collection of durum wheat[J]. Crop Science, 1987, 27: 235-241.[44]刘长友, 王素华, 王丽侠, 等. 中国绿豆种质资源初选核心种质构建[J]. 作物学报, 2008, 34(4): 700-705.[45]马洪文, 殷延勃, 王昕, 等. 利用数量性状构建粳稻核心种质的方法比较[J]. 西北农业学报, 2013, 22(11): 7-14.[46]Xu H M, Mei Y J, Hu J, et al. Sampling a core collection of Island cotton (Gossypium barbadenseL.) based on the genotypic values of fiber traits[J]. Genetic Resources and Crop Evolution, 2006, 53: 515-521.[47]徐海明, 胡晋, 邱英雄. 利用分子标记和数量性状基因值构建作物核心种质库的研究[J]. 生物数学学报, 2005, 20(3): 351-355. |
[1] | YANG Cheng-de,WANG Ying,WANG Yu-qin,YAO Yu-ling,XUE Li,XU Chang-lin,CHEN Xiu-rong. Identification and determination of biological functions of endophytic bacteria from Achnatherum inebrians in Alpine grassland of East Qilian Mountains [J]. Acta Prataculturae Sinica, 2014, 23(5): 249-255. |
[2] | XUE Xiu-dong, DONG Xiao-ying, DUAN Yan-xin, LI Pei-huan, WANG Bin. A comparison of salt resistance of three kinds of Zoysia at different salt concentrations [J]. Acta Prataculturae Sinica, 2013, 22(6): 315-311. |
[3] | NIE Gang, ZHANG Xin-quan, HUANG Lin-kai, XU Wen-zhi, MA Ying-mei. Phenotypic variation of wild Miscanthus sinensis populations from southwestern China [J]. Acta Prataculturae Sinica, 2013, 22(5): 52-61. |
[4] | TAN Shu-duan, ZHU Ming-yong, ZHANG Ke-rong, ZHU Jia-wen, WEI Gao-xia, ZHANG Quan-fa. Effects of submergence on the antioxidative enzymes and carbohydrate contents of Paspalum distichum [J]. Acta Prataculturae Sinica, 2013, 22(1): 217-224. |
[5] | LIU Jun, ZHAO Qin, YANG Zhi-min. ISSR molecular markers analysis of 9 Bermudagrass cultivation varieties [J]. Acta Prataculturae Sinica, 2012, 21(6): 159-165. |
[6] | CHEN Hui-juan, NING Zu-lin, ZHANG Zhuo-wen. Studies on the biological characteristics and dynamics of energy production of Miscanthus floridulus [J]. Acta Prataculturae Sinica, 2012, 21(6): 252-257. |
[7] |
XU Rui, NAN Zhi-biao, ZHOU Yan-fei, LI Chun-Jie.
Distribution and seasonal dynamics of ergot alkaloids in Elymus dahuricus-endophytic fungus symbiont [J]. Acta Prataculturae Sinica, 2012, 21(3): 84-92. |
[8] | QIAN Yong-sheng, ZHU Jiang-min, WU Jian-bing, ZHANG Xiao-qin, CHAI Ming-liang . Effects of fertilizing on the manilagrass growth and physiological characteristics [J]. Acta Prataculturae Sinica, 2012, 21(3): 234-241. |
[9] | Effect of addition of silicon on seed emergence and growth of tall fescue . Effect of addition of silicon on seed emergence and growth of tall fescue (Festuca arundinacea) under the different soil moistures [J]. Acta Prataculturae Sinica, 2012, 21(1): 199-205. |
[10] | GAO Wen-jun, XU Jing, XIE Kai-yun, DONG Kuan-hu. Physiological responses of Agropyron cristatum under Na2CO3 and NaHCO3 stress [J]. Acta Prataculturae Sinica, 2011, 20(4): 299-304. |
[11] | ZHANG Chun, FAN Xing, SHA Li-na, KANG Hou-yang, ZHANG Hai-qin, ZHOU Yong-hong. Phylogeny of Elymus sensu lato in Triticeae (Poaceae) based on plastid trnL-F sequence data [J]. Acta Prataculturae Sinica, 2011, 20(3): 162-173. |
[12] | WU Shu-ju, LI Xin-ling, TANG Feng-lan. Studies of biological traits and karyotype of two barnyard grass variety [J]. Acta Prataculturae Sinica, 2011, 20(3): 198-204. |
[13] | ZHANG Xiang-qian, ZHOU Feng, XIE Xin-ming. Lemma micro-morphological characteristics of MT-1 elephantgrass and its closely related varieties [J]. Acta Prataculturae Sinica, 2010, 19(4): 159-165. |
[14] | DAI Le-ying, HUANG Xi, LI Chun-jie, NAN Zhi-biao. Spatial variation of ergot alkaloids in drunken horse grass infected by Neotyphodium gansuense [J]. Acta Prataculturae Sinica, 2010, 19(6): 215-221. |
[15] | YAN Jun, YU Li, CHEN Jing-bo, WANG Dan, LIU Jian-xiu. The growth and physiology response of Al-tolerant and Al-sensitivecentipedegrass accessions on aluminum soil [J]. Acta Prataculturae Sinica, 2010, 19(2): 39-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||