Reference:[1]Zayed A, Lytle C M, Qian J H, et al. Chromium accumulation, translocation and chemical speciation in vegetable crops[J]. Planta, 1998, 206(2): 293-299.[2]Chang W Y, Chen X D, Wang L. Experimental study on conditions of Chromium(Ⅵ)-contaminated soil remediation by Aboriginal microbe[J]. Environmental Protection Science, 2007, 33(1): 877-879. [3]Xia X H, Chen J S. Advances in governance approach of soil heavy metal pollution[J]. Chinese Journal of Environmental Science, 1997, 18(3): 72-76. [4]Wang F H, Luo X S, Lin A J, et al. Progress on microbial remediation of Chromium-Contaminated soil[J]. Asian Journal of Ecotoxicolog, 2010, 5(2): 153-161. [5]Zhou J X, Liu Z. Recent developments in the remediation of Chromium-Contaminaed soil[J]. Techniques and Equipment for Environmental Pollution Control, 2000, (14): 52-56. [6]Su C Q. Chromium-Contaminated soil Cr (Ⅵ) microbial reduction and Stability of Cr (Ⅲ) [D]. Changsha: Central South University, 2010. [7]Luo Y, Mao D Q. Biological Remediation of Contaminated Environment and its Progress[J]. Journal of Liaoning University(Natural Sciences Edition), 2002, 3(4): 298-302. [8]Zhao G H, Chang W Y, Chen X D, et al. Analysis on Chromium(Ⅵ) transportation way in the typical disposal site and primary screening of Chromium tolerance plants[J]. Environmental Protection Science, 2011, (3): 40-43. [9]Meng Q H, Liu W J, Zhao D F. Preliminary study on union remediation of Chromium by endemic microbe and maize[J]. Journal of Agro-Environment Science, 2007, (5): 272-275. [10]Yang Z, Wang W, Li B W, et al. Study on characteristics of Lolium multiflorum and Festuca arundinacea absorbing and accumulating Cadmium, Lead and Zinc from contaminated soil with these metals[J]. Journal of Soil and Water Conservation, 2008, 22(2): 84-87. [11]Zhang L, Li H X, Ma W F, et al. Phytoremediation of complex contaminations in dredged sewage river sediment by Lolium multiflorum Lam[J]. Journal of Agro-Environment Science, 2006, 25(1): 107-112. [12]Zhao S L, Duo L A. Initial growth effect and ecological threshold of Festuca arundinacea L.under progressive stress of Cu2+ and Zn2+[J]. Acta Ecologica Sinica, 2002, (7): 1098-1105. [13]Zhu D, Schwab A P, Banks M K. Heavy metal leaching from mine tailing as affected by plants[J]. Journal of Environmental Quality, 1999, 28(6): 1727-1732. [14]Gao H N, Jiao Y, Li C X, et al. Effect of Na+ on silicon and phosphorus dissolved by two strains microorganisms[J]. Agricultural Research in the Arid Areas, 2012, 30(6): 162-167, 185. [15]Du S, Gao X Z. Soil analysis technical specifications[M]. Beijing: China Agriculture Press, 2006. [16]Wang X K. Plant Physiology and Biochemistry experimental principles and techniques[M]. Beijing: Higher Education Press, 2006. [17]Guan M, Pei L, Guo S L, et al. On bioaccumulation and endurance of Leersia Japonica to Chromium[J]. Environmental Science and Management, 2012, 35(3): 125-130. [18]Huang B F, Xin J L. Mechanisms of heavy metal accumulation in plants: a review[J]. Acta Prataculturae Sinica, 2013, 22(1): 300-307. [19]Wang A Y, Huang S S. Response of Three Herbaceous Plants to Cr6+ Stress[J]. Acta Agricultural Boreali-Occidemtalis Sinica, 2010, 19(7): 164-167. [20]Chen S P, Gao Y B, Liang Y, et al. Effect of endophyte infection on protective enzyme activities in leaves of Lolium perenne under water stress[J]. Chinese Journal of Applied & Environmental Biology, 2001, 7(4): 348-354. [21]Sun J, Tie B Q, Qian Z, et al. Effects of Cu, Cd, Pb, Zn and As single stress on the hrowth and physiological and biochemical characteristics of Juncus Effuses[J]. Chinese Journal of Soil Science, 2007, 38(1): 121-126. [22]Shen G F. Influence of heavy metal Pb stress on growth and antioxidative physiology of turf grass[J]. Journal of Anhui Agricultural Sciences, 2011, 39(24): 14757-14760. [23]Xu C C, Fang J L, Meng Q W, et al. Diurnal changes of photosynthesis and active oxygen scavenging enzymes in soybean leaves under field conditions[J]. Acta Botanica Boreali-Occidentalia Sinica, 1997, 17(3): 292-297. [24]Hong Z L, Lakkineni K, Zhang Z H, et al. Removal of feedback inhibition of 1 pyrroline 5 carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122(4): 1129-1136. [25]Xue L, Liu J F, Shi S Q, et al. A review on the progress of proteomic study on plant responses to heavy metal stress[J]. Acta Prataculturae Sinica, 2013, 22(4): 300-311. [26]Zhang X A, Li M Y, Wang Z H, et al. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus[J]. Acta Prataculturae Sinica, 2013, 22(2): 187-194. [27]Ding J J, Pang Y Z, Liu S L, et al. Effect and mechanisms of soil cadmium stress on Dianthus chinensis seedling growth[J]. Acta Prataculturae Sinica, 2013, 22(6): 77-85.参考文献:[1]Zayed A, Lytle C M, Qian J H, et al. Chromium accumulation, translocation and chemical speciation in vegetable crops[J]. Planta, 1998, 206(2): 293-299.[2]常文越, 陈晓东, 王磊. 土著微生物修复铬(Ⅵ)污染土壤的条件试验研究[J]. 环境保护科学, 2007, 33(1): 877-879. [3]夏星辉, 陈静生. 土壤重金属污染治理方法研究进展[J]. 环境科学, 1997, 18(3): 72-76. [4]王凤花, 罗小三, 林爱军, 等. 土壤铬(Ⅵ)污染及微生物修复研究进展[J]. 生态毒理学报, 2010, 5(2): 153-161. [5]周加祥, 刘铮. 铬污染土壤修复技术研究进展[J]. 环境污染治理技术与设备, 2000, (14): 52-56. [6]苏长青. 铬污染土壤中Cr(Ⅵ)的微生物还原及Cr(Ⅲ)的稳定性研究[D]. 长沙: 中南大学, 2010. [7]罗义, 毛大庆. 生物修复概述及国内外研究进展[J]. 辽宁大学学报(自然科学版), 2002, 3(4): 298-302. [8]赵光辉, 常文越, 陈晓东, 等. 典型场地铬(Ⅵ)迁移路径分析及耐铬植物初步筛选[J]. 环境保护科学, 2011, (3): 40-43. [9]孟庆恒, 刘文静, 赵东风. 土著微生物-玉米对Cr 污染的联合修复初步研究[J]. 农业环境科学学报, 2007, (5): 272-275. [10]杨卓, 王伟, 李博文, 等. 高羊茅和黑麦草对污染土壤Cd、Pb、Zn的富集特征[J]. 水土保持学报, 2008, 22(2): 84-87. [11]张蕾, 李红霞, 马伟芳, 等. 黑麦草对复合污染河道疏浚底泥修复的研究[J]. 农业环境科学学报, 2006, 25(1): 107-112. [12]赵树兰, 多立安. Cu2+与Zn2+递进胁迫高羊茅的初期生长效应及生态阈限研究[J]. 生态学报, 2002, (7): 1098-1105. [13]Zhu D, Schwab A P, Banks M K. Heavy metal leaching from mine tailing as affected by plants[J]. Journal of Environmental Quality, 1999, 28(6): 1727-1732. [14]高海宁, 焦杨, 李彩霞, 等. Na+对两株土壤微生物溶硅溶磷的影响[J]. 干旱地区农业研究, 2012, 30(6): 162-167, 185. [15]杜森, 高祥照. 土壤分析技术规范[M]. 北京: 中国农业出版社, 2006. [16]王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006. [17]管铭, 裴立, 郭水良, 等. 假稻对铬的富集作用及其耐受能力研究[J]. 环境科学与管理, 2012, 35(3): 125-130. [18]黄白飞, 辛俊亮. 植物积累重金属的机理研究进展[J]. 草业学报, 2013, 22(1): 300-307. [19]王爱云, 黄姗姗. 草本植物对铬污染的响应[J]. 西北农业学报, 2010, 19(7): 164-167. [20]陈世苹, 高玉葆, 梁宇, 等. 水分胁迫下内生真菌感染对黑麦草叶内保护酶系统活力的影响[J]. 应用与环境生物学报, 2001, 7(4): 348-354. [21]孙健, 铁柏清, 钱湛, 等. 单一重金属胁迫对灯心草生长及生理生化指标的影响[J]. 土壤通报, 2007, 38(1): 121-126. [22]沈高峰. 重金属Pb胁迫对草坪草生长抗氧化生理特性的影响[J]. 安徽农业科学, 2011, 39(24): 14757-14760. [23]许长成, 樊继莲, 孟庆伟, 等. 田间大豆叶片光合作用与活性氧清除酶的日变化[J]. 西北植物学报, 1997, 17(3): 292-297. [24]Hong Z L, Lakkineni K, Zhang Z H, et al. Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122(4): 1129-1136. [25]薛亮, 刘建锋, 史胜青, 等. 植物响应重金属胁迫的蛋白质组学研究进展[J]. 草业学报, 2013, 22(4): 300-311. [26]张小艾, 李名扬, 汪志辉, 等. 重金属及盐碱对二月兰幼苗生长和生理生化的影响[J]. 草业学报, 2013, 22(2): 187-194. [27]丁继军, 潘远智, 刘柿良, 等. 土壤重金属镉胁迫对石竹幼苗生长的影响及其机理[J]. 草业学报, 2013, 22(6): 77-85. |