Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (4): 269-275.DOI: 10.11686/cyxb20140433
• Orginal Article • Previous Articles Next Articles
WU Qiang-sheng1,YUAN Fang-ying1,2,FEI Yong-jun1,LI Li1,HUANG Yong-ming1
Received:
2013-08-27
Online:
2014-08-20
Published:
2014-08-20
CLC Number:
WU Qiang-sheng,YUAN Fang-ying,FEI Yong-jun,LI Li,HUANG Yong-ming. Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover[J]. Acta Prataculturae Sinica, 2014, 23(4): 269-275.
Reference:[1]Rillig M C, Wright S F, Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[J]. Plant and Soil, 2002, 238:325-333.[2]Díaz Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure[J]. Soil and Tillage Research, 2002, 64: 3-22.[3]Shan G L, Chu X H, Tian Q S, et al. Research on the dynamic changes of soil properties of typical steppe in the restoring process[J]. Acta Prataculturae Sinica, 2012, 21(4): 1-9.[4]Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171: 41-53.[5]Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447-455.[6]Feng G, Zhang Y F, Li X L. Effect of external hyphae of arbuscular mycorrhizal plant on water-stable aggregates in sandy soil[J]. Journal of Soil Water Conservation, 2001, 15(4): 99-102.[7]Wu Q S. Research and Application if Horticultural Plants Arbuscular Mycorrhizal[M]. Beijing: Science Press, 2010.[8]Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161: 575-586.[9]Bedini S, Pellegrino E, Avio L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology and Biochemistry, 2009, 41: 1491-1496. [10]Franzluebbers A J, Wright S F, Stuedemann J A. Soil aggregation and glomalin under pastures in the Southern Piedmont USA[J]. Soil Science Society of America Journal, 2000, 64: 1018-1026.[11]Zhang C X, Nan Z B. Research progress on effects of grazing on physical and chemical characteristics of grassland soil[J]. Acta Prataculturae Sinica, 2010, 19(4): 204-211.[12]An H, Xu K. The effect of grazing disturbance on soil properties in desert steppe[J]. Acta Prataculturae Sinica, 2013, 22(4): 35-42.[13]Lu Y M, Su C Q, Li H F. Effects of different salts stress on seed germination and seedling growth of Trifolium repens[J]. Acta Prataculturae Sinica, 2013, 22(4): 123-129.[14]Bao G Z, Li X L, Bai J R. Effects of grazing and patch quality of soil on density and branching pattern of Trifolium repens[J]. Acta Ecologica Sinica, 2000, 20(5): 779-783.[15]Wang X K. Plant Physiology and Biochemistry Experimental Principles and Techniques (2nd Edition)[M]. Beijing: Higher Education Press, 2008.[16]Wu Q S, Xia R X, Zou Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress[J]. European Journal of Soil Biology, 2008, 44: 122-128.[17]Kemper W D, Rosenau R C. Aggregate stability and size distribution[A]. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods[M]. South Segoe, USA: American Society of Agronomy-Soil Science Society of America, 1986: 425-442.[18]Li X G. Effect of straw on soil organic carbon constitution and structural stability[J]. Acta Pedologica Sinica, 2002, 39(3): 422-423.[19]Wu Q S, He X H, Cao M Q, et al. Relationships between glomalin related soil protein in water stable aggregate fractions and aggregate stability in citrus rhizosphere[J]. International Journal of Agriculture and Biology, 2013, 15: 603-606.[20]Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52. [21]Abbott L K, Robson A D. The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation[J]. Australian Journal of Agricultural Research, 1982, 33: 389-408.[22]Li Y Q, Li X, Hu T X. Effects of eucalyptus grandis leaf litter decomposition on the growth and photosynthetic characteristics of Eremochola ophiuroides[J]. Acta Prataculturae Sinica, 2013, 22(3): 169-176.[23]Li D K, Wang D M, Yu Z D. Advances on physiological and biochemistry effects of the symbiosis between AM fungi and plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(5): 1255-1262.[24]Wu Q S, He X H, Zou Y N, et al. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β glucosidase in the rhizosphere of Citrus unshiu[J]. Soil Biology and Biochemistry, 2012, 45: 181-183.[25]Rillig M C, Maestre F T, Lamit L J. Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry, 2003, 35: 1257-1260.[26]Tian H, Liu X L, Gai J P, et al. Review of glomalin-related soil protein and its funtion[J]. Chinese Journal of Soil Science, 2009, 40(5): 1215-1220.[27]Koide R T, Peoples M S. Behavior of Bradford reactive substances is consistent with predictions for glomalin[J]. Applied Soil Ecology, 2013, 63: 8-14.[28]Piotrowski J S, Denich T, Klironomos J N, et al. The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species[J]. New Phytologist, 2004, 164: 365-373.[29]Zhang L G, Zeng F J, Liu B, et al. Study of the photosynthesis characteristics and physical signs of four plants at the desert-oasis ecotone[J]. Acta Prataculturae Sinica, 2012, 21(1): 103-111.参考文献:[1]Rillig M C, Wright S F, Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[J]. Plant and Soil, 2002, 238:325-333.[2]Díaz-Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure[J]. Soil and Tillage Research, 2002, 64: 3-22.[3]单贵莲, 初晓辉, 田青松, 等. 典型草原恢复演替过程中土壤性状动态变化研究[J]. 草业学报, 2012, 21(4): 1-9.[4]Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171: 41-53.[5]刘中良, 宇万太. 土壤团聚体中有机碳研究[J]. 中国生态农业学报, 2011, 19(2): 447-455.[6]冯固, 张玉风, 李晓林. 丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J]. 水土保持学报, 2001, 15(4): 99-102.[7]吴强盛. 园艺植物丛枝菌根研究与应用[M]. 北京: 科学出版社, 2010.[8]Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161: 575-586.[9]Bedini S, Pellegrino E, Avio L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology and Biochemistry, 2009, 41: 1491-1496. [10]Franzluebbers A J, Wright S F, Stuedemann J A. Soil aggregation and glomalin under pastures in the Southern Piedmont USA[J]. Soil Science Society of America Journal, 2000, 64: 1018-1026.[11]张成霞, 南志标. 放牧对草地土壤理化特性影响的研究进展[J]. 草业学报, 2010, 19(4): 204-211.[12]安慧, 徐坤. 放牧干扰对荒漠草原土壤性状的影响[J]. 草业学报, 2013, 22(4): 35-42.[13]卢艳敏, 苏长青, 李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响[J]. 草业学报, 2013, 22(4): 123-129.[14]包国章, 李向林, 白静仁. 放牧及土壤斑块质量对白三叶密度及峰值格局的影响[J]. 生态学报, 2000, 20(5): 779-783.[15]王学奎. 植物生理生化实验原理和技术(第2版)[M]. 北京: 高等教育出版社, 2008.[16]Wu Q S, Xia R X, Zou Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress[J]. European Journal of Soil Biology, 2008, 44: 122-128.[17]Kemper W D, Rosenau R C. Aggregate stability and size distribution[A]. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods[M]. South Segoe, USA: American Society of Agronomy-Soil Science Society of America, 1986: 425-442.[18]李小刚. 施用秸秆对土壤有机碳组成和结构稳定性的影响[J]. 土壤学报, 2002, 39(3): 422-423.[19]Wu Q S, He X H, Cao M Q, et al. Relationships between glomalin-related soil protein in water-stable aggregate fractions and aggregate stability in citrus rhizosphere[J]. International Journal of Agriculture and Biology, 2013, 15: 603-606.[20]叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响[J]. 草业学报, 2013, 22(1): 46-52. [21]Abbott L K, Robson A D. The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation[J]. Australian Journal of Agricultural Research, 1982, 33: 389-408.[22]李羿桥, 李西, 胡庭兴.巨桉凋落叶分解对假俭草生长及光合特性的影响[J]. 草业学报, 2013, 22(3): 169-176.[23]李登武, 王冬梅, 余仲东. AM真菌与植物共生的生理生化效应研究进展[J]. 西北植物学报, 2002, 22(5): 1255-1262.[24]Wu Q S, He X H, Zou Y N, et al. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu[J]. Soil Biology and Biochemistry, 2012, 45: 181-183.[25]Rillig M C, Maestre F T, Lamit L J. Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry, 2003, 35: 1257-1260.[26]田慧, 刘晓蕾, 盖京苹, 等.球囊霉素及其作用研究进展[J]. 土壤通报, 2009, 40(5): 1215-1220.[27]Koide R T, Peoples M S. Behavior of Bradford-reactive substances is consistent with predictions for glomalin[J]. Applied Soil Ecology, 2013, 63: 8-14.[28]Piotrowski J S, Denich T, Klironomos J N, et al. The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species[J]. New Phytologist, 2004, 164: 365-373.[29]张利刚, 曾凡江, 刘波, 等.绿洲-荒漠过渡带四种植物光合及生理特征的研究[J]. 草业学报, 2012, 21(1): 103-111. |
[1] | CHAI Hua,FANG Jiang-ping,WEN Ding,LI Jie,HE Nian-peng. Effect of sampling method on the estimation of soil carbon and nitrogen storages in thicketed semiarid grasslands, Inner Mongolia [J]. Acta Prataculturae Sinica, 2014, 23(6): 28-35. |
[2] | XU Sha,GONG Ji-rui,ZHANG Zi-yu,LIU Min,WANG Yi-hui,LUO Qin-pu. The ecological stoichiometry of dominant species in different land uses type of grassland [J]. Acta Prataculturae Sinica, 2014, 23(6): 45-53. |
[3] | LI Jin-hui,LU Xin,ZHOU Zhi-yu,ZHAO Ping,JIN Qian,ZHOU Yuan-yuan. Phosphorus contents in the rhizosphere and bulk soil under Amorpha fruticosa established in different years [J]. Acta Prataculturae Sinica, 2014, 23(6): 61-68. |
[4] | CHEN Ji,CAO Jun-ji,WEI Yong-lin,LIU Ji-hong,MA Fu-lin,CHEN Di-chao,FENG Jia-yu,XIA Yao,CEN Yan. Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China [J]. Acta Prataculturae Sinica, 2014, 23(6): 78-86. |
[5] | YAN Zhong-qing,QI Yu-chun,DONG Yun-she,PENG Qin,SUN Liang-jie,JIA Jun-qiang,CAO Cong-cong,GUO Shu-fang,HE Yun-long. Nitrogen cycling in grassland ecosystems in response to climate change and human activities [J]. Acta Prataculturae Sinica, 2014, 23(6): 279-292. |
[6] | ZHANG Zhi-nan,WU Gao-lin,WANG Dong,DENG Lei,HAO Hong-min,YANG Zheng,SHANGGUAN Zhou-ping. Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(6): 313-319. |
[7] | WANG Chun-yan,ZHANG Jin-jing,LV Yu-liang,WANG Li,HE Nian-peng. Effects of long-term grazing exclusion on soil organic carbon fractions in the grasslands of Inner Mongolia [J]. Acta Prataculturae Sinica, 2014, 23(5): 31-39. |
[8] | YU Wen-chao,SONG Xiao-long,XIU Wei-ming,ZHANG Gui-long,ZHAO Jian-ning,YANG Dian-lin. Effects of additional nitrogen on litter decomposition in Stipa baicalensis grassland [J]. Acta Prataculturae Sinica, 2014, 23(5): 49-60. |
[9] | LU Hu,LI Xian-gang,YAO Tuo,PU Xiao-peng. Characteristics of vegetation and soil microorganisms of molehill grassland in an ecologically vulnerable alpine region [J]. Acta Prataculturae Sinica, 2014, 23(5): 214-222. |
[10] | YANG Yang,LIU Bing-ru,SONG Nai-ping,YANG Xin-guo. The effect of planted Caragana density on the spatial distribution of soil nutrients in desert steppe [J]. Acta Prataculturae Sinica, 2014, 23(5): 107-115. |
[11] | GAO Hai-ning,MA Guo-tai,LI Cai-xia,CHEN Yong,SONG Tao,ZHANG Yong,JIAO Yang. Effects of a microorganism on grass seedling physiological and biochemical characteristics when grown in Cr(Ⅵ) polluted soil [J]. Acta Prataculturae Sinica, 2014, 23(4): 189-194. |
[12] | MA Lin-ya,CUI Xia,FENG Qi-sheng,LIANG Tian-gang. Dynamic changes of grassland vegetation coverage from 2001 to 2011 in Gannan Prefecture [J]. Acta Prataculturae Sinica, 2014, 23(4): 1-9. |
[13] | WANG Chong,LIN Hui-long,HE Lan,CAO Ao-cheng. Research on responses of Eupatorium adenophorum’s potential distribution to climate change [J]. Acta Prataculturae Sinica, 2014, 23(4): 20-30. |
[14] | DENG Shao-hong,LIN Ming-yue,LI Fu-sheng,SU Yi-rong,LIU Kun-ping. Effects of fertilization on soil carbon pool management index and enzyme activities in pasture grown soil of the Karst region [J]. Acta Prataculturae Sinica, 2014, 23(4): 262-268. |
[15] | WANG Jie,LI Gang,XIU Wei-ming,ZHAO Jian-ning,WANG Hui,YANG Dian-lin. Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensiss teppe, Inner Mongolia, Northern China [J]. Acta Prataculturae Sinica, 2014, 23(4): 343-350. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||