[1] Ehrenfeld J G. A potential novel source of information for screening and monitoring the impact of exotic plants on ecosystems. Biological Invasions, 2006, 8: 1511-1521. [2] Li B, Ma K P. Biological invasions: opportunities and challenges facing Chinese ecologists in the era of translational ecology. Biodiversity Science, 2010, 18(6): 529-532. [3] Yu X J, Yu D, Lu Z J, et al . A possible mechanism of plant invasion: invasion of soil microbial communities are likely to invasion by changing the influence the growth of local species. Chinese Science Bulletin, 2005, 50(9): 896-903. [4] Zhang G H, Wen S B, Li G Y, et al . Effects of Ageratum conyzoides at different growth stages on soil physical and chemical properties. Chinese Journal of Tropical Crops, 2010, 31(7): 1206-1211. [5] Hang Q Q, Xu H, Fan Z W, et al . Effects of Rhus typhina invasion into young Pinus thunbergii forests on soil chemical properties. Ecology and Environmental Sciences, 2013, 22(7): 1119-1123. [6] Jiang Z L, Liu W X, Wan F H, et al . Differences in soil enzymatic activities and soil nutrients of Ageratina adenophora and native plants communities at the rhizosphere zones. Journal of Agro-Environment Science, 2008, 27(2): 660-664. [7] Zhu M W, Qu B, Yang H, et al . Changes of soil enzyme activities and fungal diversity in rhizosphere soil of Solanum rostratum at different development stages. Chinese Journal of Ecology, 2011, 30(3): 448-452. [8] Liu H M, Huangfu C H, Chang R H, et al . Effects of two kinds of alternative plants on nutrient content and enzyme activity of soil invaded by Flaveria bidentis . Weed Science, 2012, 30(2): 24-28. [9] Li J M, Zhang C, Dong M. Change of soil microbial biomass and enzyme activities in the community invaded by Mikania micrantha , due to Cuscuta campestris parasitizing the invader. Acta Ecologica Sinica, 2008, 28(2): 868-876. [10] Liu Q R. Flaveria Juss. (Compositae), a newly naturalized genus in China. Acta Phytotaxonomica Sinica, 2005, 43(2): 178-180. [11] Li X J, Wang G Q, Zhang C X, et al . The distribution characteristics and chemical control of alien species Flaveria bidentis . Weed Science, 2006, (4): 58-61. [12] Huangfu C H, Chen D Q, Wang N N, et al . The mutual allelopathic effect between invasive plant Flaveria bidentis and four forgage species. Acta Prataculturae Sinica, 2010, 19(4): 22-32. [13] Zhang T R, Huangfu C H, Bai X M, et al . Effects of Flaveria bidentis invasion on soil nutrient contents and enzyme activities. Chinese Journal of Ecology, 2010, 29(7): 1353-1358. [14] Yan S L, Huangfu C H, Li G, et al . Effects of replacement control with four forage species on bacterial diversity of soil invaded by Flaveria bidentis . Chinese Journal of Plant Ecology, 2011, 35(1): 45-55. [15] Lora B, Perkins D W, Johnson R S, et al . Plant-induced changes in soil nutrient dynamics by native and invasive grass species. Plant Soil and Environment, 2011, 345: 365-374. [16] Montserrat V, Marc T, Carey M S, et al . Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. Journal of Biogeography, 2006, 33: 853-861. [17] Bao S D. Soil Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000. [18] Guan S Y. Soil enzyme activity determination. Soil Enzyme and Its Study Methods[M]. Beijing: Agriculture Press, 1986. [19] He J Z, Shen J P, Zhang L M, et al . Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 2007, 9(9): 2364-2374. [20] Lu R K. The collection of water samples and chemical analysis. Methods in Agricultural Chemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000. [21] Wu J S. The Determination Method of Soil Microbial Biomass and Its Application[M]. Beijing: China Meteorological Press, 2006: 54-71. [22] Nanmpieri P, Ceccanti B, Bianchi D. Characterization of humus-phosphatase complexes extracted from soil. Soil Biology and Biochemistry, 1988, 5: 683-691. [23] Kamimura Y, Hayano K. Properties of protease extracted from tea-field soil. Biology and Fertility of Soils, 2000, 30: 351-355. [24] Huenneke L F, Hamburg S P, Koide R, et al . Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology, 1990, 71(2): 478-491. [25] Grubb P J. Root competition in soils of different fertility: a paradox resolved. Phytocoenologia, 1994, 24: 495-505. [26] Dassonville N, Vanderhoeven S, Vanparys V, et al . Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia, 2008, 157: 131-140. [27] Santoro R, Jucker T, Carranza M L, et al . Assessing the effects of Carpobrotus invasion on coastal dune soils. Does the nature of the invaded habitat matter. Community Ecology, 2011, 12(2): 234-240. [28] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology & Biochemistry, 2001, 33: 1633-1640. [29] Cao L, Qin S H, Zhang J L, et al . Effect of leguminous forage rotations on soil microbe consortiums and enzyme activity in continuously cropped potato fields. Acta Prataculturae Sinica, 2013, 22(3): 139-145. [30] Jiang Z L, Liu W X, Wan F H, et al . Effects of Lantana camara invasion on lawn soil nutrient properties. Journal of Yunnan Agricultural University, 2009, 24(2): 159-163. [31] Li W H, Zhang C B, Jiang H B, et al . Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K.. Plant and Soil, 2006, 281: 309-324. [32] Zhong Q, Jun F X, Guo M Q, et al . Impacts of the invasive annual herb Ambrosia artemisiifolia L. on soil microbial carbon source utilization and enzymatic activities. European Journal of Soil Biology, 2013, 60: 58-66. [33] Taylor J P, Wilson B, Mills M S, et al . Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques. Soil Biology & Biochemistry, 2002, 34: 387-401. [34] Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biology & Biochemistry, 2001, 33: 1481-1491. [35] Shishido M, Chanway C P. Storage effects on indigenous soil microbial communities and PGPR efficiency. Soil Biology & Biochemistry, 1998, 30: 937-947. [36] Jenkinson D S. The turnover of the organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1990, 329: 361-368. [37] Yu H B, Zhang S N, Xiao R L, et al . Utilization of harvested aquatic plants as a mulch. Acta Prataculturae Sinica, 2013, 22(6): 143-149. [38] Zhu Y, Hou X C, Wu J Y, et al . The effects of nitrogen fertilizer on the contents of TOC, POC, SMBC and WSOC in two kinds of sandy substrates. Acta Prataculturae Sinica, 2013, 22(2): 38-46. [39] Li W H, Han R H, Gao G J. Effects of Mikania Micrantha invasion on soil microbial biomass and soil respiration. Journal of South China Normal University, 2008, 3(3): 95-102. [40] Gao Z L, Guo Y Q, Zou J W. Effect of invasive plants ( Conyza sumatrenss and Alternanthera philoxeroides ) on soil carbon and nitrogen processes. Journal of Agro-Environment Science, 2011, 30(4): 797-805. [41] Saggar S, McIntosh P, Hedley C, et al . Changes in soil microbial biomass, metabolic quotient and organic matter turnover under Hieracium ( H. pilosella L.). Biology and Fertility of Soils, 1999, 30: 232-238. [42] Jenkinson D S. Advances in nitrogen cycling. In: Mwhilson J B. Determination of Microbial Carbon and Nitrogen in Soil[M]. Allingford: CAB International, 1988: 368-386. [2] 李博, 马克平. 生物入侵中国学者面临的转化生态学机遇与挑战. 生物多样性, 2010, 18(6): 529-532. [3] 于兴军, 于丹, 卢志军, 等. 一个可能的植物入侵机制:入侵种通过改变入侵地土壤微生物群落影响本地种的生长. 科学通报, 2005, 50(9): 896-903. [4] 张桂花, 文少白, 李光义, 等. 不同生育期的胜红蓟对土壤理化性状的影响. 热带作物学报, 2010, 31(7): 1206-1211. [5] 黄乔乔, 许慧, 范志伟, 等. 火炬树入侵黑松幼林过程中对土壤化学性质的影响. 生态环境学报, 2013, 22(7): 1119-1123. [6] 蒋智林, 刘万学, 万方浩, 等. 紫茎泽兰与本地植物群落根际土壤酶活性和土壤肥力的差异. 农业环境科学学报, 2008, 27(2): 660-664. [7] 祝明炜, 曲波, 杨红, 等. 刺萼龙葵不同生育期根际土壤酶活性和真菌多样性变化. 生态学杂志, 2011, 30(3): 448-452. [8] 刘红梅, 皇甫超河, 常瑞恒, 等. 2 种替代植物对黄顶菊入侵土壤养分及酶活性的影响. 杂草科学, 2012, 30(2): 24-28. [9] 李钧敏, 章成, 董鸣. 田野菟丝子寄生对薇甘菊入侵群落土壤微生物生物量和酶活性的影响. 生态学报, 2008, 28(2): 868-876. [10] 刘全儒. 中国菊科植物一新归化属——黄菊属. 植物分类学报, 2005, 43(2): 178-180. [11] 李香菊, 王贵启, 张朝贤, 等. 外来植物黄顶菊的分布、特征特性及化学防除. 杂草科学, 2006, (4): 59-61. [12] 皇甫超河, 陈冬青, 王楠楠, 等. 外来入侵植物黄顶菊与四种牧草间化感互作. 草业学报, 2010, 19(4): 22-32. [13] 张天瑞, 皇甫超河, 白小明, 等. 黄顶菊入侵对土壤养分和酶活性的影响. 生态学杂志, 2010, 29(7): 1353-1358. [14] 闫素丽, 皇甫超河, 李刚, 等. 四种牧草植物替代控制对黄顶菊入侵土壤细菌多样性的影响. 植物生态学报, 2011, 35(1): 45-55. [17] 鲍士旦. 土壤有机质、氮、钾的测定. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [18] 关松荫. 土壤酶活性测定. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [20] 鲁如坤. 水样的采集和化学性质分析. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [21] 吴金水. 土壤微生物生物量碳、氮. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006. [29] 曹莉, 秦舒浩, 张俊莲, 等. 轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响. 草业学报, 2013, 22(3): 139-145. [30] 蒋智林, 刘万学, 万方浩, 等. 马缨丹入侵对草坪土壤养分特征的影响. 云南农业大学学报, 2009, 24(2): 159-163. [37] 余红兵, 张树楠, 肖润林, 等. 沟渠水生植物资源化利用研究. 草业学报, 2013, 22(6): 143-149. [38] 朱毅, 侯新村, 武菊英, 等. 氮肥对两种沙性栽培基质中有机碳类物质含量的影响. 草业学报, 2013, 22(2): 38-46. [39] 李伟华, 韩瑞宏, 高桂娟. 薇甘菊入侵对土壤微生物生物量和土壤呼吸的影响. 华南师范大学学报, 2008, 3(3): 95-102. [40] 高志亮, 过燕琴, 邹建文. 外来植物水花生和苏门白酒草入侵对土壤碳氮过程的影响. 农业环境科学学报, 2011, 30(4): 797-805. |