Acta Prataculturae Sinica ›› 2015, Vol. 24 ›› Issue (4): 191-200.DOI: 10.11686/cyxb20150422
Previous Articles Next Articles
ZHANG Feng, NAN Zhi-Biao, YAN Fei-Yang, LI Fang, DUAN Ting-Yu*
Received:
2013-09-11
Revised:
2013-12-09
Online:
2015-04-20
Published:
2015-04-20
ZHANG Feng, NAN Zhi-Biao, YAN Fei-Yang, LI Fang, DUAN Ting-Yu. The important role of arbuscular mycorrhizal fungi in carbon storage in grassland ecosystems[J]. Acta Prataculturae Sinica, 2015, 24(4): 191-200.
Yu G R, Li H T, Wang S Q. Terrestrial Ecosystem Carbon Cycle and Carbon Accumulation on Global Change. Beijing: Meteorological Press, 2003. Scurlock J M O, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 2002, 8(8): 736-753. Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116(3): 457-463. Schuman G E, Janzen H H, Herrick J E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 2002, 116(3): 391-396. Kang L, Han X G, Zhang Z B, et al. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362: 997-1008. Ren J Z. Grassland Agriculture Ecology. Beijing: China Agricultural Press, 1995: 1. Fang J Y, Yang Y H, Ma W H, et al. Carbon sink and its transformation by grassland ecosystems in China. Scientia Sinica(Vitae), 2010, (7): 566-576. Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biology, 2010, 16(11): 3036-3047. Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14(7): 1592-1599. Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass. The Global Carbon Cycle, 1979, 13: 129-182. Lützow M V, Kgel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 2006, 57(4): 426-445. Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 2006, 70(2): 555-569. Wendu R L, Li G, Zhang J N, et al. The study of soil microbial biomass and soil enzyme avtivity on different grassland in Hulunbeier, Inner Mongolia. Acta Prataculturae Sinica, 2010, 19(5): 94-102. Zhu J J, Xu H, Xu M L, et al. Review on the ecological relationships between forest trees and ectomycorrhizal fungi. Chinese Journal of Ecology, 2003, 22(6): 70-76. Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 2013, 339(6127): 1615-1618. Smith S E, Read D J. Mycorrhizal Symbiosis. Amsterdam, the Netherlands & Boston, MA, USA: Academic Press, 2008. Willis A, Rodrigues B F, Harris P J C. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32(1): 1-20. O’Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizal associations in the southern Simpson Desert. Australian Journal of Botany, 2001, 49(4): 493-499. Bao Y Y, Yan W. Arbuscular mycorrhizae and their structural types on common plants in grasslands of mid-western Inner Mongolia. Chinese Biodiversity, 2004, 12(5): 501-508. BaoY Y, Yan W, Zhang M Q. Arbuscular mycorrhizal fungi associated with common plants in grassland of Inner Mongolia. Mycosystema, 2007, 26(1): 51-58. He X L, Bai C M, Zhao L L. Spatial distribution of arbuscular mycorrhizal fungi in Astragalus adsurgens root-zone soil in Mu Us sand land. Chinese Journal of Applied Ecology, 2008, (12): 2711-2716. Fogel R, Hunt G. Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Canadian Journal of Forest Research, 1979, 9(2): 245-256. Nicolson T H, Johnston C. Mycorrhiza in the Gramineae: III. Glomus fasciculatus as the endophyte of pioneer grasses in a maritime sand dune. Transactions of the British Mycological Society, 1979, 72(2): 261-268. Stribley D P, Tinker P B, Rayner J H. Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytologist, 1980, 86(3): 261-266. Paul E A, Kucey R M N. Carbon flow in plant microbial associations. Science, 1981, 213(4506): 473-474. Bevege D I, Bowen G D, Skinner M F. Comparative Carbohydrate Physiology of Ecto-and Endomycorrhizas. Endomycorrhizas; Proceedings of a Symposium, 1975. Zhang Y J, Yang G W, Liu N, et al. Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 2013, 22(2): 290-299. Tao N, Zhang X Y, Zeng H, et al. Seasonal characteristics of soil CO2 efflux and carbon and nitrogen cycling induced by microorganisms in snow-covered and frozen soil system. Microbiology China, 2013, 40(1): 146-157. Hoeksema J D, Chaudhary V B, Gehring C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. Treseder K K, Holden S R. Fungal carbon sequestration. Science, 2013, 339(6127): 1528-1529. Johnson D, Leake J R, Read D J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry, 2002, 34(10): 1521-1524. Domanski G, Kuzyakov Y, Siniakina S, et al. Carbon flows in the rhizosphere of ryegrass (Lolium perenne). Journal of Plant Nutrition and Soil Science, 2001, 164(4): 381-387. Fan Y J, Hou X Y, Shi H X, et al. Effect of carbon cycling in grassland ecosystems on climate warming. Acta Prataculturae Sinica, 2012, 21(3): 294-302. Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 2003, 133(1): 16-20. Yang H X, Liu R J, Guo S X. Effects of arbuscular mycorrhizal fungus Glomus mossese on the growth characteristics of Festuca arundinacea under salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203. Shi W Q, Ding X D, Zhang S R. Effects of arbuscular mycorrhizal fungi on Leymus chinensis growth and soil carbon. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(2): 357-362. Hetrick B A D, Wilson G W T, Hartnett D C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 1989, 67(9): 2608-2615. Rouhier H, Read D J. The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytologist, 1998, 139(2): 367-373. Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels. Acta Prataculturae Sinica, 2013, 22(1): 46-52. Hetrick B D, Kitt D G, Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany, 1988, 66(7): 1376-1380. Qin H B, He C X, Zhang Z B, et al. The effects of arbuscular mycorrhizal fungi on the growth of cucumber in greenhouse. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2007, 28(3): 69-72. Wang R Z, He C X, Wang H S, et al. Effect of AM fungi on the yield and nutrient quality of different muskmelon varieties in greenhouse. Acta Horticulturae Sinica, 2010, 37(11): 1767-1774. Zhang S B, Wang H J, Wang Y S, et al. Effects of the different substrates on the growth of cucumber and infection of arbuscular mycorrhizal fungi. Chinese Agricultural Science Bulletin, 2011, 27(10): 275-279. McHugh J M, Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L.) Roth., in nursery systems. Restoration Ecology, 2004, 12(4): 533-545. Huang D, Sang W G, Zhu L, et al. Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plant Ambrosia artemisiifolia. The Journal of Applied Ecology, 2010, 21(12): 3056-3062. Zhang Y F, Fen G, Li X L. The effect of arbuscular mycorrhizal fungi on the components and concentrations of organic acids in the exudates of mycorrhizal red clover. Acta Ecologica Sinica, 2003, 23(1): 30-37. Gavito M E, Curtis P S, Mikkelsen T N, et al. Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. Journal of Experimental Botany, 2000, 51(352): 1931-1938. Setl H. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia, 2000, 125(1): 109-118. Amundson R. The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 2001, 29(1): 535-562. Guo R, Wang X K, Lu F, et al. Soil carbon sequestration and its potential by grassland ecosystems in China. Acta Ecologica Sinica, 2008, 28(2): 0862-0867. Peng S L, Shen H, Zhang Y T, et al. Compare different effect of arbuscular mycorrhizal colonization on soil structure. Acta Ecologica Sinica, 2012, 32(3): 863-870. Van Der Heijden M G A, Streitwolf-Engel R, Riedl R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006, 172(4): 739-752. Martin C A, Stutz J C. Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza, 2004, 14(4): 241-244. Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Global Change Biology, 2006, 12(5): 793-803. Bever J D, Schultz P A, Pringle A, et al. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why: The high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. Bioscience, 2001, 51(11): 923-932. Quintero-Ramos M, Espinoza-Victoria D, Ferrera-Cerrato R, et al. Fitting plants to soil through mycorrhizal fungi: mycorrhiza effects on plant growth and soil organic matter. Biology and Fertility of Soils, 1993, 15(2): 103-106. Miller R M, Jastrow J D. Mycorrhizal Fungi Influence Soil Structure, in Arbuscular Mycorrhizas: Physiology and Function. Berlin, Germany: Springer Netherlands, 2000: 3-18. Peng X H, Zhang B, Zhao Q G. A review on relationship between soil organic carbon pools and soil structure stability. Acta Pedologica Sinica, 2004, 41(4): 618-623. Chen B Y, Liu S R, Ge J P, et al. The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province. Chinese Journal of Applied Ecology, 2007, 18(6): 1219-1224. Yang Y, Han G D, Li Y H, et al. Response of soil respiration to grazing intensity,water contents,and temperature of soil in different grasslands of Inner Mongolia. Acta Prataculturae Sinica, 2012, 21(6): 8-14. Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000, 48(1): 71-90. Kane E S, Valentine D W, Schuur E A G, et al. Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Canadian Journal of Forest Research, 2005, 35(9): 2118-2129. Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48(1): 7-20. Chen W X. Soil and Environmental Microbiology. Beijing: China Agricultural University Press, 1990: 18-43. Zhou Y M, Han S J, Xin L H. Soil respiration of Pinus koraiensis and P. sylvestriformis trees growing at elevated CO2 concentration. Chinese Journal of Applied Ecology, 2006, 17(9): 1757-1760. Hu S, Chapin F S, Firestone M, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature, 2001, 409(6817): 188-191. Li H, Li X L, Xiang D. Role of arbuscular mycorrhzizal fungi in Leymus chinensis litter decomposition. Ecology and Environmental Sciences, 2010, 19(7): 1569-1573. He Y J, Zhong Z C, Dong M. Nutrients transfer for host plant and litter decompositon by AMF in Karst soil. Acta Ecologica Sinica, 2012, 32(8): 2525-2531. Pregitzer K S, Zak D R, Loya W M, et al. The Contribution of Root-rhizosphere Interactions to Biogeochemical Cycles in a Changing World. The Rhizosphere: An Ecological Perspective, 2007: 155-178. Berntson G M, Wayne P M, Bazzaz F A. Below-ground architectural and mycorrhizal responses to elevated CO2 in Betula alleghaniensis populations. Functional Ecology, 1997, 11(6): 684-695. Rillig M C, Wright S F, Kimball B A, et al. Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biology, 2001, 7(3): 333-337. Johnson N C, Wolf J, Koch G W. Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecology Letters, 2003, 6(6): 532-540. Smith S E, Read D G. Mycorrhizal Symbiosis. Amsterdam, the Netherlands & Boston, MA, USA: Academic Press, 1996. Chen J, Chen X, Tang J J. Influence of elevated atmospheric CO2 on rhizosphere microbes and arbuscular mycorrhizae. Chinese Journal of Applied Ecology, 2004, 15(12): 2388-2392. Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892. Chen H, Mo J M, Zhang W, et al. The effects of nitrogen deposition on forest carbon sequestration. Acta Ecologica Sinica, 2012, 32(21): 6864-6879. Krén O, Nylund J E. Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Canadian Journal of Botany, 1997, 75(10): 1628-1642. Gao T P. Response of mycorrhizal fungi to CO2 rising and N deposition. Journal of Desert Research, 2009, 29(1): 131-135. Rillig M C, Allen M F, Klironomos J N, et al. Arbuscular mycorrhizal percent root infection and infection intensity of bromus hordeaceus grown in elevated atmospheric CO2. Mycologia, 1998, 90(2): 199-205. Sun L J, Qi Y C, Dong Y S, et al. Research progresses on the effects of global change on microbial community diversity of grassland soils. Progress in Geography, 2012, 31(12): 1715-1723. Chung H, Zak D R, Reich P B, et al. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13(5): 980-989. Pieiro G, Paruelo J M, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2010, 63(1): 109-119. Zhang Y, Cui X M, Fan M S. Atmospheric N deposition and its influences on the grassland biodiversity. Pratacultural Science, 2007, 24(7): 12-17. Yoshida L C, Allen E B. Response to ammonium and nitrate by a mycorrhizal annual invasive grass and native shrub in southern California. American Journal of Botany, 2001, 88(8): 1430-1436. Heil G W, Werger M J A, De Mol W, et al. Capture of atmospheric ammonium by grassland canopies. Science, 1988, 239(4841): 764-765. Fernandez D P, Neff J C, Reynolds R L. Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA. Journal of Arid Environments, 2008, 72(5): 777-791. Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13(8): 959-968. Li L H, Liu X H, Chen Z Z. Study on the carbon cycle of Leymus chinensis steppe in the Xilin River basin. Acta Botanica Sinica, 1998, 40(10): 955-961. Kareiva P. Diversity and sustainability on the prairie. Nature, 1996, 379: 673-674. Cao G M, Xu X L, Long R J, et al. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biology Letters, 2008, 4(6): 681-684. Hirota M, Tang Y, Hu Q, et al. The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau. Atmospheric Environment, 2005, 39(29): 5255-5259. Su Y Y, Guo L D. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 2007, 17(8): 689-693. Medina-Roldán E, Arredondo J T, Huber-Sannwald E, et al. Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in Central Mexico. Journal of Arid Environments, 2008, 72(4): 546-556. Liebig M A, Gross J R, Kronberg S L, et al. Soil response to long-term grazing in the northern Great Plains of North America. Agriculture, Ecosystems & Environment, 2006, 115(1): 270-276. Johnson N C. Can fertilization of soil select less mutualistic mycorrhizae. Ecological Applications, 1993, 3(4): 749-757. Sikora L J, McCoy J L. Attempts to determine available carbon in soils. Biology and Fertility of Soils, 1990, 9(1): 19-24. Hatch D J, Lovell R D, Antil R S, et al. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung. Biology and Fertility of Soils, 2000, 30(4): 288-293. Christensen N L. The effects of fire on physical and chemical properties of soils in Mediterranean-climate shrublands. The Role of Fire in Mediterranean-type Ecosystems, 1994, 107: 79-95. Wang H Q, Guo A X, Di X Y. Immediate changes in soil organic carbon and microbial biomass carbon after an experimental fire in great xing’an mountains. Journal of Northeast Forestry University, 2011, 39(5): 573-576. Ren J Z, Liang T G, Lin H L, et al. Study on grassland’s responses to global climate change and its carbon sequestration potentials. Acta Prataculturae Sinica, 2011, 20(2): 1-22. Lin S S, Sun X W, Wang X J, et al. Mycorrhizal studies and their application prospects in China. Acta Prataculturae Sinica, 2013, 22(5): 310-325. Li H, Smith S E, Holloway R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 2006, 172(3): 536-543. Jin H R, Jiang X Y. Recent advances in the studies of nitrogen metabolism and translocation in arbuscular mycorrhizal fungi. Mycosystema, 2009, 28(3): 466-471. Parton W J, Cole C V, Stewart J W B, et al. Simulating regional patterns of soil C, N, and P dynamics in the US central grasslands region. Ecology of Arable Land—Perspectives and Challenges, 1989, 39: 99-108. Chen P F, Wang J L, Wang X M, et al. Research progress in estimating carbon storage of forest ecosystem. Forest Inventory and Planning, 2009, 34(6): 39-45. 于贵瑞, 李海涛, 王绍强. 全球变化与陆地生态系统碳循环和碳蓄积. 北京: 气象出版社, 2003. 任继周. 草地农业生态学. 北京: 中国农业出版社, 1995: 1. 方精云, 杨元合, 马文红, 等. 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 2010, (7): 566-576. 文都日乐, 李刚, 张静妮, 等. 呼伦贝尔不同草地类型土壤微生物量及土壤酶活性研究. 草业学报, 2010, 19(5): 94-102. 朱教君, 徐慧, 许美玲, 等. 外生菌根菌与森林树木的相互关系. 生态学杂志, 2003, 22(6): 70-76. 包玉英, 闫伟. 内蒙古中西部草原主要植物的丛枝菌根及其结构类型研究. 生物多样性, 2004, 12(5): 501-508. 包玉英, 闫伟, 张美庆. 内蒙古草原常见植物根围AM真菌. 菌物学报, 2007, 26(1): 51-58. 贺学礼, 白春明, 赵丽莉. 毛乌素沙地沙打旺根围AM真菌的空间分布. 应用生态学报, 2008, (12): 2711-2716. 张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策. 草业学报, 2013, 22(2): 290-299. 陶娜, 张馨月, 曾辉, 等. 积雪和冻结土壤系统中的微生物碳排放和碳氮循环的季节性特征. 微生物学通报, 2013, 40(1): 146-157. 范月君, 侯向阳, 石红霄, 等. 气候变暖对草地生态系统碳循环的影响. 草业学报, 2012, 21(3): 294-302. 杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响. 草业学报, 2014, 23(4): 195-203. 石伟琦, 丁效东, 张士荣. 丛枝菌根真菌对羊草生物量和氮磷吸收及土壤碳的影响. 西北植物学报, 2011, 31(2): 357-362. 叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌 (AMF) 对狗牙根生长与再生的影响. 草业学报, 2013, 22(1): 46-52. 秦海滨, 贺超兴, 张志斌, 等. 丛枝菌根真菌对温室有机土栽培黄瓜的作用研究. 内蒙古农业大学学报(自然科学版), 2007, 28(3): 69-72. 王锐竹, 贺超兴, 王怀松, 等. 丛枝菌根真菌对不同甜瓜品种产量及营养品质的影响. 园艺学报, 2010, 37(11): 1767-1774. 张淑彬, 王红菊, 王幼珊, 等. 不同育苗基质对黄瓜生长及丛枝菌根真菌侵染的影响. 中国农学通报, 2011, 27(10): 275-279. 张玉凤, 冯固, 李晓林. 丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响. 生态学报, 2003, 23(1): 30-37. 郭然, 王效科, 逯非, 等. 中国草地土壤生态系统固碳现状和潜力. 生态学报, 2008, 28(2): 0862-0867. 彭思利, 申鸿, 张宇亭, 等. 不同丛枝菌根真菌侵染对土壤结构的影响. 生态学报, 2012, 32(3): 863-870. 彭新华, 张斌, 赵其国. 土壤有机碳库与土壤结构稳定性关系的研究进展. 土壤学报, 2004, 41(4): 618-623. 陈宝玉, 刘世荣, 葛剑平, 等. 川西亚高山针叶林土壤呼吸速率与不同土层温度的关系. 应用生态学报, 2007, 18(6): 1219-1224. 杨阳, 韩国栋, 李元恒, 等. 内蒙古不同草原类型土壤呼吸对放牧强度及水热因子的响应. 草业学报, 2012, 21(6): 8-14. 陈文新. 土壤和环境微生物. 北京: 中国农业大学出版社, 1990: 18-43. 周玉梅, 韩士杰, 辛丽花. CO2浓度升高对红松和长白松土壤呼吸作用的影响. 应用生态学报, 2006, 17(9): 1757-1760. 李欢, 李晓林, 向丹. 丛枝菌根真菌对羊草凋落物降解作用的研究. 生态环境学报, 2010, 19(7): 1569-1573. 何跃军, 钟章成, 董鸣. AMF 对喀斯特土壤枯落物分解和对宿主植物的养分传递. 生态学报, 2012, 32(8): 2525-2531. 陈静, 陈欣, 唐建军. 大气二氧化碳浓度升高对植物根际微生物及菌根共生体的影响. 应用生态学报, 2004, 15(12): 2388-2392. 陈浩, 莫江明, 张炜, 等. 氮沉降对森林生态系统碳吸存的影响. 生态学报, 2012, 32(21): 6864-6879. 高天鹏. 菌根真菌对CO2浓度升高和 N 沉降的响应. 中国沙漠, 2009, 29(1): 131-135. 孙良杰, 齐玉春, 董云社, 等. 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 2012, 31(12): 1715-1723. 张燕, 崔学民, 樊明寿. 大气氮沉降及其对草地生物多样性的影响. 草业科学, 2007, 24(7): 12-17. 王海淇, 郭爱雪, 邸雪颖. 大兴安岭林火点烧对土壤有机碳和微生物量碳的即时影响. 东北林业大学学报, 2011, 39(5): 573-76. 任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22. 林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望. 草业学报, 2013, 22(5): 310-325. 金海如, 蒋湘艳. AM 真菌氮代谢与运转研究新进展. 菌物学报, 2009, 28(3): 466-471. 程鹏飞, 王金亮, 王雪梅, 等. 森林生态系统碳储量估算方法研究进展. 林业调查规划, 2009, 34(6): 39-45. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||