[1] 刘继麟. 玉米育种学[M]. 北京:中国农业出版社,2000. [2] Iltis H H, Benz B F. Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua[J]. Novon, 2000, 10: 382-390. [3] Mano Y, Muraki M, Fujimori M, et al. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp.huehuetenangensis) seedlings[J]. Euphytica, 2005, 142: 33-42. [4] Mano Y, Omori F, Takamizo T, et al. Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings[J]. Plant Soil, 2006, 281: 269-279. [5] Pernilia E S, Carlos H L, Arnulf M. Chromosome C-banding of the teosinte Zea nicaraguensis and comparison to other Zea species[J]. Hereditas, 2007, 144: 96-101. [6] Bird R M. A name change for Central American teosinte[J]. Taxon, 1978, 27: 361-363. [7] Doebley J F, Iltis H H. The taxonomy of Zea (Gramineae). I. Subgeneric classification with key to taxa[J]. American Journal of Botany, 1980, 67: 982-993. [8] Hadlaczky G Y, Ka′lma′n L. Discrimination of homologous chromosomes of maize with Giemsa staining[J]. Heredity, 1975, 35: 371-374. [9] Iltis H H, Doebley J F. Taxonomy of Zea (Gramineae). 2. Subspecific categories in the Zea mays complex and a generic synopsis[J]. American Journal of Botany, 1980, 67: 994-1004. [10] Kato T A, Lopez R. Chromosome knobs of the perennial teosintes[J]. Maydica, 1990, 35: 125-141. [11] Molina M C, Naranjo C A. Cytogenetic studies in the genus Zea. 1. Evience for five as the basic chromosome number[J]. Theoretical and Applied Genetics, 1987, 73: 542-550. [12] Naranjo A, Molina M C. New cytological evidences for a basic number Х=5 in the genus Zea[J]. Maize Genetics Coop Newsletter (USA), 1987, 61: 62-63. [13] Poggio L, Confalonieri V, Comas C, et al. Genomic affinities of Zea luxurians, Z.diploperennis, and Z.perennis: Meiotic behavior of their F1 hybrids and genomic in situ hybridization (GISH)[J]. Genome, 1999, 42: 993-1000. [14] Tito C M, Poggio L, Naranjo C A. Cytogenetic studies in the genus Zea. 3. DNA content and heterochromatin in species and hybrids[J]. Theoretical and Applied Genetics, 1991, 83: 58-64. [15] Wilkes H G. Teosinte: The Closest Relative of Maize[M]. Cambridge, Massachusetts: Bussey Institute of Harvard University, 1967. [16] 田松杰,石云素,宋燕春,等. 利用AFLP技术研究玉米及其野生近缘种的遗传关系[J]. 作物学报,2004,30(4):354-359. [17] Saghai-Maroof M A, Soliman K M, Jorgensen R A. Ribosomal DNA spacer-length pelymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81: 8014-8018. [18] Beadle G W. Teosinte and the origin of maize[J]. Journal of Heredity, 1939, 30: 245-247. [19] Beadle G W. The ancestry of corn[J]. Scientific American, 1980, 242: 112-119. [20] Collins G N. Teosinte in Mexico[J]. Journal of Heredity, 1921, 12: 339-350. [21] Li Y G, Dewald C L, Sims P L. Genetic relationships within tripsacum as detected by RAPD variation[J]. Annals of Botany, 1999, 84: 695-702. [22] 田志宏,邱永福,严寒,等. 用RAPD标记分析高羊茅的遗传多样性[J]. 草业学报,2007,16(1):58-63. [23] 陆建英,杨晓明,马瑞君. 青藏高原东缘鹅绒委陵菜种群克隆结构的研究[J]. 草业学报,2008,17(2):68-74. [24] 刘光欣,陈佩度,王苏玲,等. 8个大赖草材料的C-分带和RAPD分析[J]. 草业学报,2006,15(2):107-112. [25] 赵剑峰,杨庆凯. RAPD技术在国内玉米育种中的应用[J]. 玉米科学,2000,8(4):18-19 |