Acta Prataculturae Sinica ›› 2009, Vol. 18 ›› Issue (5): 235-243.
Previous Articles Next Articles
ZHANG Yi-gong, ZHANG Li-jing, FU Hua
Received:
2008-11-20
Online:
2009-10-20
Published:
2009-10-20
CLC Number:
ZHANG Yi-gong, ZHANG Li-jing, FU Hua. Progress in vitamin E synthesis-related enzyme gene cloning and stress physiology in plants[J]. Acta Prataculturae Sinica, 2009, 18(5): 235-243.
[1]Fryer M J. The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant, Cell & Environment, 1992, 15:381-392. Soll J, Schultz G. Comparison of geranlgeranyl and phytyl substituted methylquinols in the tocopherol synthesis of spinach chloroplasts. Biochemical Biophysical Research Communications, 1979, 91:715-720. [2] KamalEldin A, Appelqvist L A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996, 31:671-701. [3] Brigelius-Floh E R, Traber M G. Vitamin E: Function and metabolism. The Journal of the Federation of American Societies for Experimental Biology, 1999, 13:1145-1155. [4] Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: An overview. Current Pharmaceutical Design, 2004, 10(14):1677-1694. [5] Ajjawi I, Shintani D. Engineered plants with elevated vitamin E: A nutraceutical success story. Trends in Biotechnology, 2004, 22(3):104-107. [6] 肖雄. 维生素E的研究与应用. 畜禽业,2002,4:24-26. [7] 雷炳福. 我国天然维生素E产业化前景初探. 中国油脂, 2003,28(4):49-51. [8] Velasco L, Goffman F D, Pujadas-Salva A J. Fatty acids and tocochromanols in seeds of Orobanche. Phytochemistry, 2000, 54:295-300. [9] Hess K R, Zhang W, Baggerly K A, et al. Microarrays:Handling the deluge of data and extracting reliable information. Trends in Biotechnology, 2001, 19:463-468. [10] DellaPenna D, Pogson B J. Vitamin synthesis in plants: Tocopherols and carotenoids. Annual Review Plant Biology, 2006, 57:711-738. [11] DellaPenna D. A decade of progress in understanding vitamin E synthesis in plants. Journal of Plant Physiology, 2005, 162:729-737. [12]Maeda H, DellaPenna D. Tocopherol functions in photosynthetic organism. Current Opinion in Plant Biology, 2007, 10:260-265. [13] Collakova E, DellaPenna D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiology, 2003, 133:930-940. [14] Collin V C, Eymery F, Genty B, et al. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant, Cell & Environment, 2008, 31:244-257. [15]Hofius D, Sonnewald U. Vitamin E biosynthesis: Biochemistry meets cell biology. Trends in Plant Science, 2003, 8:6-8. [16]Hu Y K. Molecular biology and biotechnology improvement of vitamin E biosynthesis in plant. China Biothchnology, 2004, 24(1):32-35. [17] Cahoon E B, Hall S E, Ripp K G, et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology, 2003, 21:1082-1087. [18] Falk J, Andersen G, Kernebeck B, et al. Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. Federation of European Biochemical Societies Letters, 2003, 540:35-40. [19] 潘卫东,李晓峰,陈双燕,等. 植物维生素E合成相关酶基因的克隆及其在体内功能研究进展. 植物学通报, 2006, 23(1):68-77. [20] 王永飞,马三梅. 利用基因工程提高植物维生素E营养品质的策略. 广西植物, 2006, 26(1):76-79. [21] Norris S R, Shen X, DellaPenna D. Complementation of the Arabidopsis pds1 mutation with the gene encoding phydroxyphenylpyruvate dioxygenase. Plant Physiology, 1998, 117:1317-1323. [22] Garcia I, Rodgers M, Lenne C, et al. Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochemical Journal, 1997, 352:761-769. [23] Dahnhardt D, Falk J, Appel J, et al. The hydroxyphenylpyruvate dioxygenase from Synechocystis sp. PCC 6803 is notrequired for plastoquinone biosynthesis. Federation of European Biochemical Societies Letters, 2002, 523:177-181. [24] Tsegaye Y, Shintani D K, DellaPenna D. Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiology and Biochemistry, 2002, 40:913-920. [25] Shintani D, DellaPenna D. Elevating the vitamin E content of plants through metabolic engineering. Science, 1998, 282:2098-2100. [26] Collakova E, DellaPenna D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiology, 2001, 127:1113-1124. [27] Savidge B, Weiss J D, Wong Y H H, et al. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiology, 2002, 129:321-332. [28] Schledz M, Seidler A, Beyer P, et al. A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. Federation of European Biochemical Societies Letters, 2001, 499:15-20. [29]Oster U, Bauer C E, Rudiger W. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. Journal of Biological Chemistry, 1997, 272:9671-9676. [30] Porfirova S, Bergmuller E, Tropf S, et al. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proceeding of National Academy of Science of the USA, 2002, 99:12495-12500. [31] Sattler S E, Cahoon E B, Coughlan S J, et al. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiology, 2003, 132:2184-2195. [32] Provencher L M, Miao L, Sinha N, et al. Sucrose exportdefective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell, 2001, 13:1127-1141. [33] Hofius D, Hajirezaei M R, Geiger M, et al. RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiology, 2004, 135:1256-1268. [34] Kanwischer M, Porfirova S, Bergmuller E, et al. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiology, 2005, 137:713-723. [35] Collakova E, DellaPenna D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiology, 2003, 131:632-642. [36] Shintani D K, Cheng Z, DellaPenna D. The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. Federation of European Biochemical Societies Letters, 2002, 511:1-5. [37] Cheng Z, Sattler S, Maeda H, et al. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell, 2003, 15:2343-2356. [38] Van Eenennaam A L, Lincoln K, Durrett T P, et al. Engineering vitamin E content: From Arabidopsis mutant to soy oil. Plant Cell, 2003, 15:3007-3019. [39] Y amauchi R, Matsushita S. Light-induced lipid peroxidation in isolated chloroplasts form spinach leaves and role of alphatocopherol Vitamin E.Agricultural and Biological Chemistry, 1979, 43:2157-2161. [40] Lichtenthaler H K, Prenzel U, Douce R, et al. Localization of prenylquinones in the envelope of spinach-chloroplasts. Biochimica et Biophysica Acta, 1981, 641:99-105. [41] Heber U, Heldt H W. The chloroplast envelope-structure, function, and role in leaf metabolism. Annual Review of Plant Physiology, 1981, 32:139-168. [42] Soll J, Schultz G, Joyard J, et al. Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach-chloroplasts. Archives of Biochemistry and Biophysics, 1985, 238:290-299. [43] Muller-Moule P, Havaux M, Niyogi K K. Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiology, 2003, 133:748-760. [44] Havaux M, Bonfils J P, Lutz C, et al. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiology, 2000, 124:273-284. [45] Golan T, Muller-Moule P, Niyogi K K. Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant, Cell & Environment, 2006, 29:879-887. [46] Gosset F R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt tolerant and salt-sensitive cultivars of cotton. Crop Science, 1994, 34 :706-714. [47] Grasses T, Grimm B, Koroleva O, et al. Loss of a-tocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions but increases sensitivity to high-light stress. Planta, 2001, 213:620-628. [48] Havaux M, Lutz C, Grimm B. Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiology, 2003, 132: 300-310. [49] Maeda H, Song W, Sage T L, et al. Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell, 2006, 18: 2710-2732. [50]Maeda H, Sakuragi Y, Bryant D A, et al. Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiology, 2005, 138:1422-1435. [51] Havaux M, Eymery F, Porfirova S, et al. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell, 2005, 17:3451-3469. [52] Sattler S E, Gilliland L U, Magallanes-Lundback M, et al. Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell, 2004, 16:1419-1432. [53] 郭娟. 拟南芥生育酚环化酶基因(VTE1)与烟草维生素E含量和抗性关系的研究. 福建:厦门大学,2006. [54] Luis P, Behnke K, Toepel J, et al. Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant, Cell & Environment, 2006, 29: 2043-2054. [55]郭娟,刘小丽,金冶平,等. 拟南芥VTE1过量表达可以增加维生素E 含量和提高烟草植株耐盐性. 应用与环境生物学报,2006,12(4):468-471. [56] Liu X L, Hua X J, Guo J, et al. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnology Letters, 2008, 30:1275-1280. |
[1] | ZHOU Xin,ZUO Xiao-an,ZHAO Xue-yong,WANG Shao-kun,LUO Yong-qing,YUE Xiang-fei,ZHANG La-mei. Effect of change in semiarid sand dune habitat on aboveground plant biomass, carbon and nitrogen [J]. Acta Prataculturae Sinica, 2014, 23(6): 36-44. |
[2] | GUO Yu-peng. A study on advances in plant photorespiration [J]. Acta Prataculturae Sinica, 2014, 23(4): 322-329. |
[3] | LU Yan,LEI Jia-qiang,ZENG Fan-jiang,XU Li-shuai,PENG Shou-lan,LIU Guo-jun. Effects of salt treatments on the growth and ecophysiological characteristics of Haloxylon ammodendron [J]. Acta Prataculturae Sinica, 2014, 23(3): 152-159. |
[4] | WANG Dan,GONG Chun-xia,GOU Ya-feng,ZHOU Lu,ZHU Jun-bao,GAO Jian-feng. Phylogenetic analyses on the biological crusts of several algae in the Taklimakan Desert [J]. Acta Prataculturae Sinica, 2014, 23(3): 97-103. |
[5] | DUAN Xiao-feng, ZHANG Lei, WEI Jian-guo, ZHU Yong-ning, YANG Yang, JIN Fei. Prediction of pasture reviving period and analysis of its climate potential productivity [J]. Acta Prataculturae Sinica, 2014, 23(2): 1-8. |
[6] | TAO Ye, ZHANG Yuan-ming. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China [J]. Acta Prataculturae Sinica, 2014, 23(2): 38-48. |
[7] | REN Zhi-guo, CHEN Ya-peng, LI Wei-hong, LIU Shu-bao. The effect of groundwater depth on the δ13C value of constructive species leaf in the lower reaches of the Tarim River [J]. Acta Prataculturae Sinica, 2014, 23(2): 76-82. |
[8] | NAN Li-li, SHI Shang-li, ZHANG Jian-hua. Study on root system development ability of different root-type alfalfa [J]. Acta Prataculturae Sinica, 2014, 23(2): 117-124. |
[9] | ZHAO Cai, ZHOU Hai-yan, CHAI Qiang, HUANG Gao-bao, LIU Hui-juan, ZHU Jing. Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions [J]. Acta Prataculturae Sinica, 2014, 23(2): 133-139. |
[10] | PENG Lan-qing, LI Xin-yong, QI Xiao, YUE Yan-hong, FAN Shu-gao, LI Shu-cheng, WANG Yan-rong. The relationship of root traits with persistence and biomass in 10 alfalfa varieties [J]. Acta Prataculturae Sinica, 2014, 23(2): 147-153. |
[11] | LI Hui, KANG Jian, ZHAO Geng-mao, YIN Xiao-ming, LIANG Ming-xiang. Effects of salinity on accumulation and distribution mode of dry matter and soluble sugar of Jerusalem artichoke (Helianthus tuberosus) [J]. Acta Prataculturae Sinica, 2014, 23(2): 160-170. |
[12] | ZHANG Huai-shan, ZHAO Gui-qi, LI Meng-fei, XIA Zeng-run, WANG Chun-mei. Physiological responses of Pennisetum longissimum var. intermedium seedlings to PEG, low temperature and salt stress treatments [J]. Acta Prataculturae Sinica, 2014, 23(2): 180-188. |
[13] | WANG Ruo-meng, DONG Kuan-hu, LI Yu-ying, LI Chen, YANG Jing-fang. Effects of applying exogenous plant hormone on praline metabolism of Swainsonia salsula seedlings under NaCl stress [J]. Acta Prataculturae Sinica, 2014, 23(2): 189-195. |
[14] | ZHANG Jin-zheng,ZHANG Qi-yuan,SUN Guo-feng,HE Qing,LI Xiao-dong,LIU Hong-zhang. Effects of drought stress and re-watering on growth and photosynthesis of Hosta [J]. Acta Prataculturae Sinica, 2014, 23(1): 167-176. |
[15] | ZHAO Ha-lin,QU Hao,ZHOU Rui-lian,YUN Jian-ying,LI Jin,WANG Jin. Effects of sand burial on growth of two shrub species and their differences in physiological responses [J]. Acta Prataculturae Sinica, 2014, 23(1): 185-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||