Busa J S, Hammond L E. Regulatory progress, toxicology, and public concerns with 2, 4-D: Where do we stand after two decades. Crop Protection, 2007, 26: 266-269. 李小坤, 鲁剑巍, 陈防. 牧草施肥研究进展. 草业学报, 2008, 17(2): 136-142. Neilson J W, Josephson K L, Pillai S D, et al. Polymerase chain reaction and gene probe detection of the 2, 4-dichlorophenoxyacetic acid degradation plasmid, pJP4. Applied & Environmental Microbiology, 1992, 58: 1271-1275. 周萍, 刘国彬, 薛萐. 草地生态系统土壤呼吸及其影响因素研究进展. 草业学报, 2009, 18(2): 184-193. Curtis G P, Reinhard M. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfate and humic acid. Environmental Science & Technology, 1994, 28: 2393-2401. Lovley D R, Coates J D, Blunt-Harris E L, et al. Humic substances as electron acceptors for microbial respiration. Nature, 1996, 382: 445-448. Cervantes F J, Lettinga L, Vu-Thi-Thu G, et al. Quinone-respiratio improves dechlorination of carbon tetrachloride by anaerobic sludge. Applied Microbiology Biotechnology, 2004, 64: 702-711. Hong Y G, Guo J, Xu Z C, et al. Humic substances act as electron acceptor znd redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. Journal of Microbiology and Biotechnology, 2007, 17: 428-437. Straub K L, Schink B. Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiology Letters, 2003, 220: 229-233. Apper L, Mcknight D, Robinfulton J, et al. Fulvic acid oxidation state detectionusing fluorescence spectroscopy. Environmental Science & Technology, 2002, 36: 3170-3175. Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31: 426-428. 王弋博, 武春媛, 周顺桂. 韩国丛毛单胞菌CY01的铁还原和腐殖质还原. 兰州大学学报(自然科学版), 2010, 46(2): 35-39. Leahy J G, Colwell R R. Microbial degradation of hydrocarbons in the environment. Microbiology Molecular Biology Reviews, 1990, 54: 305-315. Coates J D, Ellis D J, Blunt-Harris E L, et al. Recovery of humic-reducing bacteria from a diversity of environments. Applied & Environmental Microbiology, 1998, 64: 1504-1509. Kristina L S, Andreas K, Bernhard S. Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. Methods in Enzymology, 2005, 397: 58-70. Lovley D R, Frage J L, Blunt-Harris E L, et al. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimicaet Hydrobiologica, 1998, 26: 152-157. Loffler F E. Enrichment, cultivation, and detection of reductively dechlorinating bacteria. Methods in Enzymology, 2005, 397: 77-111. Coates J D. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimicaet Hydrobiologica, 1998, 26: 152-157. Fultz M L, Durst R A. Mediator compounds for the electrochemical study of biological redox systems. Analytica Chimica Acta, 1982, 14: 1-18. Lovley D R. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial MicrobioIogy &Biotechnology, 1995, 14: 85-93. Lovley D R. Microbial reduction of iron manganese and other metals. Advances in Agronomy, 1995, 54: 175-231. Lovley D R, Coates I D, Saffarini D A, et al. Dissimilatory iron reduction. In: Winkelman, Carrano C. Iron and Related Transition Metals in Microbial Metabolism. Switzerland: Harwood Academic Publishers, 1997: 187-215.
|