[1] The Flora of China Editorial Committee. Flora Reipublicae Popularis Sinicae[M]. Beijing: Science Press, 1998: 21-24. [2] Li Q, Li J N, Tao S L, et al . Research progress on toxicity, harm and prevention of Oxytropis . Pratacultural Science, 2009, 26(4): 99-105. [3] Li X. Study on Allelopathy Mechanism of Natural Meadow Poisonous Plants Oxytropis ochrocephala [D]. Lanzhou: Gansu Agricultural University, 2011. [4] Dong Q. Releasing Mode and Isolated and Identified of Main Allelochemicals from Oxytropis ochrocephala L.[D]. Lanzhou: Gansu Agricultural University, 2012. [5] Deng J M. Investigation on Main Poisonous Plants in Tianzhu Natural Meadow and Study on Allelochemicals of Oxytropis ochrocephala Bunge[D]. Lanzhou: Gansu Agricultural University, 2009. [6] Zhou S Q, Wang H, Huang Z J, et al . Research on allelopathy of Stellera chamaejasme in decompose process in the soil on alfalfa. Chinese Journal of Grassland, 2008, 30(4): 78-82. [7] Zhou S Q, Huang Z J, Wang H, et al . Allelopathic effect of Stellera chamaejasme decomposing in soil on Onobrychis viciifolia . Pratacultural Science, 2009, 26(3): 91-94. [8] Li J Y, Zhao J, Bian Y, et al . DNA extraction and removing humic substance from wetland soil. Microbiology China, 2010, 37(8): 1130-1137. [9] Lu P, Li H, Wu Y S, et al . Extraction methods of microbial DNA from the desert grassland soil in Inner Mongolia. Journal of Inner Mongolia University (Acta Scientiarum Naturalium Universitatis Nei Mongol), 2008, 39(4): 430-434. [10] Lozupone C A, Knight R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Review, 2008, 32(4): 557-578. [11] Rietveld W J. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. Journal of Chemical Ecology, 1983, 9(2): 295-308. [12] Davis E F. The toxic principle of Juglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants. American Journal of Botany, 1928, 15: 62. [13] Muller C H. Inhibitory terpenes volatilized from salvia shrubs. Bulletin of the Torrey Botanical Club, 1965, 92: 38-45. [14] Zhao F G, He L F, Luo Q Y. Plant Stress Physiology and Ecology[M]. Beijing: Chemical Industry Press, 2004: 9-36. [15] Inderjit, van der Putten W H. Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology & Evolution, 2010, 25(9): 512-519. [16] Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486. [17] Wolfe B E, Klironomos J N. Breaking new ground: soil communities and exotic plant invasion. Bioscience, 2005, 55(6): 477-487. [18] Peiffer J A, Spor A, Koren O, et al . Diversity and heritability of the maize rhizosphere microbiome underfield conditions. Proceedings of the National Academy of Sciences, 2013, 110(16): 6548-6553. [19] Mendes R, Kruijt M, de Bruijn I, et al . Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 2011, 332: 1097-1100. [20] Weller D M, Raaijmakers J M, Gardener B B M, et al . Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 2002, 40: 309-348. [21] Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 2005, 3(4): 307-319. [22] Klironomos J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 2002, 417: 67-70. [23] Sasikumar A P, Seung H Y, Zhang L, et al . Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 2013, 97(22): 9621-9636. [24] Jason A P, Aymé S, Omry K, et al . Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 2013, 110(16): 6548-6553. [25] Ye X Q, Wu M, Shao X X, et al . Effects of water extracts from Solidago canadensis on the growth of maize seedlings and the underlying photosynthetic mechanisms. Acta Prataculturae Sinica, 2014, 23(6): 217-224. [1] 中国科学院中国植物志编辑委员会. 中国植物志 (第42卷第二分册)[M]. 北京: 科学出版社, 1998: 21-24. [2] 李泉, 李俊年, 陶双伦, 等. 棘豆的毒性、危害及防治. 草业科学, 2009, 26(4): 99-105. [3] 李翔. 天然草地有毒植物黄花棘豆化感作用机理研究[D]. 兰州: 甘肃农业大学, 2011. [4] 董强. 黄花棘豆化感物质释放途径及主要化感物质分离鉴定[D]. 兰州: 甘肃农业大学, 2012. [5] 邓建梅. 天祝天然草地主要有毒植物资源调查及黄花棘豆化感作用研究[D]. 兰州: 甘肃农业大学, 2009. [6] 周淑清, 王慧, 黄祖杰, 等. 狼毒在土壤里腐解过程中对苜蓿化感作用的研究. 中国草地学报, 2008, 30(4): 78-82. [7] 周淑清, 黄祖杰, 王慧, 等. 狼毒在土壤里腐解过程中对红豆草生化他感作用的研究. 草业科学, 2009, 26(3): 91-94. [8] 李靖宇, 赵吉, 边玉, 等. 湿地土壤微生物DNA提取及其脱腐技术. 微生物学通报, 2010, 37(8): 1130-1137. [9] 卢萍, 李浩, 吴永胜, 等. 内蒙古荒漠草地土壤微生物DNA提取方法的研究. 内蒙古大学学报 (自然科学版), 2008, 39(4): 430-434. [14] 赵福庚, 何龙飞, 罗庆云. 植物逆境生理生态学[M]. 北京: 化学工业出版社, 2004: 9-36. [25] 叶小齐, 吴明, 邵学新, 等. 加拿大一枝黄花水提液对玉米幼苗生长的化感作用及其机理[J]. 草业学报, 2014, 23(6): 217-224. |