[1] Wang R X. QTL Analysis of Grain Filling Rate and Related Traits in Wheat ( Triticum aestivum L.) under Different Ecological Environments[D]. Beijing: Chinese Academy of Agricultural Science, 2008. [2] Lu Q L, Chai S X, Zhang L J, et al . Contribution of winter wheat leaf and non-leaf organs to grain weight. Acta Prataculturae Sinica, 2013, 22(5): 165-174. [3] Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis[M]. Beijing: Chinese Agricultural Press, 2003: 502. [4] Kumar N, Kulwal P, Gaur A, et al . QTL analysis for grain weight in common wheat. Euphytica, 2006, 151: 135-144. [5] Varshney R K, Prasad M, Roy J K, et al . Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theoretical and Applied Genetics, 2000, 100: 1290-1294. [6] Yang D, Jing R, Chang X, et al . Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat ( Triticum aestivum L.) stems. Genetics, 2007, 176: 571-584. [7] Yang D L, Zhang G H, Li X M, et al . Genetic characteristics associated with drought tolerance of plant height and thousand-grain mass of recombinant inbred lines of wheat. Chinese Journal of Applied Ecology, 2012, 23(6): 1569-1576. [8] Wu X, Chang X, Jing R. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE, 2012, 7(2): e31249. [9] Wang R X, Zhang X Y, Wu K, et al . The stability of QTL mapping for thousand grain weight in multiple environments. Journal of Triticeae Crops, 2012, 32(1): 1-6. [10] Li S, Wang C, Chang X, et al . Genetic dissection of developmental behavior of grain weight in wheat under diverse temperature and water regimes. Genetica, 2012, 140: 393-405. [11] Groos C, Robert N, Bervas E, et al . Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theoretical and Applied Genetics, 2003, 106: 1032-1040. [12] Liao X Z, Wang J, Zhou R H, et al . Mining favorable alleles of QTLs conferring 1000-grain weight from synthetic wheat. Acta Agronomica Sinica, 2008, 34(11): 1877-1884. [13] Ramya P, Chaubal A, Kulkarni K, et al . QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat ( Triticum aestivum L.). Journal of Applied Genetics, 2010, 51: 421-429. [14] Campbell K G, Bergman C J, Gualberto D G, et al . Quantitative trait loci associated with kernel traits in a soft×hard wheat cross. Crop Science, 1999, 39: 1184-1195. [15] Quarrie S A, Steed A, Calestani C, et al . A high-density genetic map of hexaploid wheat ( Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics, 2005, 110: 865-880. [16] Liu S B, Zhou R H, Dong Y C, et al . Development, utilization of introgression lines using a synthetic wheat as donor. Theoretical and Applied Genetics, 2006, 112: 1360-1373. [17] Li S H, Jia J Z, Wei X Y, et al . A intervarietal genetic map and QTL analysis for yield traits in wheat. Molecular Breeding, 2007, 20: 167-178. [18] Huang X Q, Kempf H, Ganal M W, et al . Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat ( Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 933-943. [19] Börner A, Schumann E, Fürste A, et al . Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat ( Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 105: 921-936. [20] Röder M S, Huang X Q, Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Functional & Integrative Genomics, 2008, 8: 79-86. [21] Li W F, Liu B, Peng T, et al . Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and immortalized F2 population. Scientia Agricultura Sinica, 2012, 45(17): 3453-3462. [22] Zhang K P, Xu X B, Tian J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agronomica Sinica, 2009, 35(2): 270-278. [23] Wang R X, Zhang X Y, Wu L, et al . QTL analysis of grain size and related traits in winter wheat under different ecological environments. Scientia Agricultura Sinica, 2009, 42(2): 398-407. [24] Li L, Yang D L, Li M F, et al . Effects of source-sink regulation on WSC in vegetative organs and thousand-grain mass of wheat under different water conditions. Chinese Journal of Applied Ecology, 2013, 24(7): 1879-1888. [25] Ma Z P, Li M F, Yang D L, et al . Relationship between grain filling and accumulation and remobilization of water soluble carbohydrates in leaf and stem of winter wheat during the grain filling in different water conditions. Acta Prataculturae Sinica, 2014, 23(4): 68-78. [26] Zhang G H, Yang D L, Li M F, et al . Genetic analysis of QTL mapping for developmental behaviors of plant height and QTL×water regimes interactions in wheat. Journal of Agricultural Biotechnology, 2012, 20(9): 996-1008. [27] Xue S, Zhang Z, Lin F, et al . A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 2008, 117: 181-189. [28] Yu J K, Dake T M, Singh S, et al . Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818. [29] Toker C. Estimates of broad-sense heritability for seed yield and yield criteria in faba bean ( Vicia faba L.). Hereditas, 2004, 140: 222-225. [30] Wang D L, Zhu J, Li Z K, et al . Mapping QTLs with epistatic effects and QTL×environment interaction by mixed linear model approaches. Theoretical and Applied Genetics, 1999, 99: 1255-1264. [31] Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat ( Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 1105-1114. [32] Zhang L H, Xu M F. An analysis of genetic effects on harvest index and several other agronomic characteristics of wheat. Acta Agriculturae Nuleatae Sinica, 1997, 11(3): 135-140. [1] 王瑞霞. 不同生态环境下小麦籽粒灌浆速率及有关性状的QTL定位分析[D]. 北京: 中国农业科学院, 2008. [2] 鲁清林, 柴守玺, 张礼军, 等. 冬小麦叶片和非叶器官对粒重的贡献. 草业学报, 2013, 22(5): 165-174. [3] 庄巧生. 中国小麦品种改良及系谱分析[M]. 北京: 中国农业出版社, 2003: 502. [7] 杨德龙, 张国宏, 李兴茂, 等. 小麦重组近交系群体株高和千粒重的抗旱遗传特性. 应用生态学报, 2012, 23(6): 1569-1576. [9] 王瑞霞, 张秀英, 吴科, 等. 多个环境下小麦千粒重QTL定位的稳定性分析. 麦类作物学报, 2012, 32(1): 1-6. [12] 廖祥政, 王瑾, 周荣华, 等. 发掘人工合成小麦中千粒重QTL 的有利等位基因. 作物学报, 2008, 34(11): 1877-1884. [21] 李文福, 刘宾, 彭涛, 等. 利用DH 和IF 2 两个群体进行小麦粒重、粒型和硬度的QTL分析. 中国农业科学, 2012, 45(17): 3453-3462. [22] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35(2): 270-278. [23] 王瑞霞, 张秀英, 伍玲, 等. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009, 42(2): 398-407. [24] 李丽, 杨德龙, 栗孟飞, 等. 不同水分条件下源库调节对小麦营养器官WSC及籽粒千粒重的影响. 应用生态学报, 2013, 24(7): 1879-1888. [25] 马召朋, 栗孟飞, 杨德龙, 等. 不同水分条件下冬小麦灌浆期茎叶可溶性碳水化合物积累转运与籽粒灌浆的关系. 草业学报, 2014, 23(4): 68-78. [26] 张国宏, 杨德龙, 栗孟飞,等. 小麦株高发育动态QTL定位及其与水分环境互作遗传分析. 农业生物技术学报, 2012, 20(9): 996-1008. [32] 张利华, 许梅芬. 小麦收获指数和其它几个农艺性状的基因效应分析. 核农学报, 1997, 11(3): 135-140. |