[1] Clarkson D T, Hanson J B. The mineral nutrition of higher plants. Annual Review of Plant Physiology, 1980, 31(1): 239-298. [2] Maathuis F J. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 2009, 12(3): 250-258. [3] Kronzucker H J, Coskun D, Schulze L M, et al . Sodium as nutrient and toxicant. Plant and Soil, 2013, 369(1-2): 1-23. [4] Zhou X R, Yue L J, Wang S M. Sodium compound fertilizer improved growth and drought tolerance of Zygophyllum xanthoxylum seedlings under drought stress. Acta Prataculturae Sinica, 2014, 23(6): 142-147. [5] Chong P F, Li H Y, Li Y. Physiological responses of seedling roots of the desert plant Reaumuria soongorica to drought stress. Acta Prataculturae Sinica, 2015, 24(1): 72-80. [6] Li Y, Liu S K. Cloing of a TPS gene and analysis of its function in stress tolerance in Puccinellia tenuiflora . Acta Prataculturae Sinica, 2015, 24(1): 99-106. [7] Kefu Z, Hai F, Ungar I. Survey of halophyte species in China. Plant Science, 2002, 163(3): 491-498. [8] Song J, Wang B S. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Annals of Botany, 2015, 115(3): 541-553. [9] Wang S M, Zhang J L, Flowers T J. Low-affinity Na + uptake in the halophyte Suaeda maritima . Plant Physiology, 2007, 145(2): 559-571. [10] Mori S, Suzuki K, Oda R, et al . Characteristics of Na + and K + absorption in Suaeda salsa (L.) Pall. Soil Science and Plant Nutrition, 2011, 57(3): 377-386. [11] Nieves-Cordones M, Alemán F, Martínez V, et al . K + uptake in plant roots. The systems involved, their regulation and parallels in other organisms. Journal of Plant Physiology, 2014, 171(9): 688-695. [12] Shao Q, Han N, Ding T, et al . SsHKT1;1 is a potassium transporter of the C 3 halophyte Suaeda salsa that is involved in salt tolerance. Functional Plant Biology, 2014, 41(8): 790-802. [13] Duan H R, Ma Q, Zhang J L, et al . The inward-rectifying K + channel SsAKT1 is a candidate involved in K + uptake in the halophyte Suaeda salsa under saline condition. Plant and Soil, doi:10.1007/S11104-015-2539-9. [14] Santa-Maria G E, Rubio F, Dubcovsky J, et al . The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997, 9(12): 2281-2289. [15] Nieves-Cordones M, Alemán F, Martínez V, et al . The Arabidopsis thaliana HAK5 K + transporter is required for plant growth and K + acquisition from low K + solutions under saline conditions. Molecular Plant, 2010, 3(2): 326-333. [16] Wang Q, Guan C, Wang P, et al . AtHKT1;1 and AtHAK5 mediate low-affinity Na + uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regulation, 2015, 75: 615-623. [17] Zhang J L, Flowers T J, Wang S M. Differentiation of low-affinity Na + uptake pathways and kinetics of the effects of K + on Na + uptake in the halophyte Suaeda maritima . Plant and Soil, 2012, 368(1-2): 629-640. [18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 2001, 25(4): 402-408. [19] Zhang Z, Zhang J, Chen Y, et al . Genome-wide analysis and identification of HAK potassium transporter gene family in maize ( Zea mays L.). Molecular Biology Reports, 2012, 39(8): 8465-8473. [20] Martinez-Cordero M A, Martinez V, Rubio F. Cloning and functional characterization of the high-affinity K + transporter HAK1 of pepper. Plant Molecular Biology, 2004, 56(3): 413-421. [21] Su H, Golldack D, Zhao C S, et al . The expression of HAK-type K + transporters is regulated in response to salinity stress in common ice plant. Plant Physiology, 2002, 129(4): 1482-1493. [22] Davies C, Shin R, Liu W, et al . Transporters expressed during grape berry ( Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Journal of Experimental Botany, 2006, 57(12): 3209-3216. [23] Nieves-Cordones M, Martinez-Cordero M A, Martinez V, et al . An N H 4 + -sensitive component dominates high-affinity K + uptake in tomato plants. Plant Science, 2007, 172(2): 273-280. [24] Véry A A, Nieves-Cordones M, Daly M, et al . Molecular biology of K + transport across the plant cell membrane: What do we learn from comparison between plant species? Journal of Plant Physiology, 2014, 171(9): 748-769. [25] Gupta M, Qiu X, Wang L, et al . KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice ( Oryza sativa ). Molecular Genetics and Genomics, 2008, 280(5): 437-452. [26] Gierth M, Mäser P. Potassium transporters in plants——involvement in K + acquisition, redistribution and homeostasis. FEBS Letters, 2007, 581(12): 2348-2356. [27] Ahn S J, Shin R, Schachtman D P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K + uptake. Plant Physiology, 2004, 134(3): 1135-1145. [28] Rigas S, Debrosses G, Haralampidis K, et al . TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell, 2001, 13(1): 139-151. [29] Quintero F J, Blatt M R. A new family of K + transporters from Arabidopsis that are conserved across phyla. FEBS Letters, 1997, 415(2): 206-211. [30] Fu H H, Luan S. AtKUP1: a dual-affinity K + transporter from Arabidopsis . Plant Cell, 1998, 10(1): 63-73. [31] Osakabe Y, Arinaga N, Umezawa T, et al . Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis . Plant Cell, 2013, 25: 609-624. [32] Li P H, Chen M, Wang B S. Effect of K + nutrition on growth and activity of leaf tonoplast V-H + -ATPase and V-H + -PPase of Suaeda salsa under NaCl stress. Acta Botanica Sinica, 2002, 44(4): 433-440. [33] Rubio F, Santa-Maria G E, Rodriguez-Navarro A. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum, 2000, 109(1): 34-43. [4] 周向睿, 岳利军, 王锁民. 钠复合肥提高多浆旱生植物霸王幼苗生长及抗旱性. 草业学报, 2014, 23(6): 142-147. [5] 种培芳, 李航逸, 李毅. 荒漠植物红砂根系对干旱胁迫的生理响应. 草业学报, 2015, 24(1): 72-80. [6] 李莹, 柳参奎. 碱茅6-磷酸海藻糖合成酶基因的克隆及其耐逆性分析. 草业学报, 2015, 24(1): 99-106. [32] 李平华, 陈敏, 王宝山. K + 营养对NaCl胁迫下盐地碱蓬生长及叶片液泡膜V-H + -ATPase和V-H + -PPase活性的影响. 植物学报, 2002, 44(4): 433-440. |