[1] Yang J, Zhang J, Wang Z, et al . Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology, 2004, 135(3): 1621-1629. [2] Chong P F, Li H Y, Li Y. Physiological responses of seedling roots of the desert plant Reaumuria soongorica to drought stress. Acta Prataculturae Sinica, 2015, 24(1): 72-80. [3] Yuan Y H, Deng X P, Huang M L, et al . Studies on compensatory effect and root adjustment in biological water saving agriculture. Journal of Agricultural Science and Technology, 2003, 5(6): 24-28. [4] Yamauchi A, Pardales J R, Kono Y. Root system structure and its relation to stress tolerance. Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics[C]. Tokyo: Japan International Research Center for Agricultural Sciences, 1996: 211-233. [5] García A, Gonzalez M C. Morphological markers for the early selection of drought-tolerant rice varieties. Cultivate Tropical, 1997, 18(2): 47-50. [6] Zhao G J, Xu W Z, Guo Y L, et al . Responses of root system of Lespedeza davurica L. to soil water change. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 484-490. [7] Tsakaldimi M, Tsitsoni T, Ganatsas P, et al . A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex . Plant and Soil, 2009, 324(1-2): 103-113. [8] Ding H, Zhang Z M, Dai L X, et al . Responses of root morphology of peanut varieties differing in drought tolerance to water-deficient stress. Acta Ecologica Sinica, 2013, 33(17): 5169-5176. [9] Shan L, Su P, Guo L K, et al . The response of different crops to drying wetting cycle in field. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(2): 164-170. [10] Wei L Y, Shangguan Z P. Specific root length characteristics of three plant species, Bothriochloa ischaemum , Hippophae rhamnoidess and Quercus liaotungensis in the Loess Plateau. Acta Ecologica Sinica, 2006, 26(12): 4164-4170. [11] Li Q, Zhang J T, Gao H W. Biomass of three Bothriochloa ischaemum communities at the Loess Plateau of Shanxi Province. Acta Prataculturae Sinica, 2003, 12(1): 53-58. [12] Wu D L, Shanguan T L, Gao H W. A study on plant species diversity of Bothriochloa ischaemum communities in southeast Shanxi Province. Acta Agrestia Sinica, 2002, 10(4): 237-243. [13] Li D W, Zhang W H, Ren Z Z. Niche characteristics of dominant populations of Sophora davidii community in loess gully region. Chinese Journal of Applied Ecology, 2005, 16(12): 2231-2235. [14] Zhang N, Liang Y M. The effect of arid climate on the structure and above-ground growth of Bothrichloa ischaemum community. Acta Ecologica Sinica, 2000, 20(6): 964-970. [15] Zhang N, Liang Y M. Effect of arid climate on underground growth of Bothriochloa ischaemum community. Chinese Journal of Applied Ecology, 2002, 13(7): 827-832. [16] Xu W Z, Deng X P, Xu B C. Effects of water stress and fertilization on leaf gas exchange and photosynthetic light-response curves of Bothriochloa ischaemum L. Photosynthetica, 2013, 51(4): 603-612. [17] Dong K H. Studies on the Productive Performances, Niche of the Populations and Pasture Cultivation in Old World Bluestem ( Bothrichloa ischaemum ) Rangelands in Shanxi[D]. Beijing: China Agricultural University, 2004. [18] van der Weele C M, Spollen W G, Sharp R E, et al . Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. Journal of Experimental Botany, 2000, 51(350): 1555-1562. [19] Eissenstat D M. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytologist, 1991, 118(1): 63-68. [20] Li W R, Zhang S Q, Ding S Y, et al . Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. [21] Gu Y F, Ding S Y, Gao Z Y, et al . Influence of drought and rewatering on the pattern of photosynthate partitioning of winter wheat. Engineering Sciences, 2012, 14(3): 59-64. [22] Jin B H, Chen Y J, Wu Y H, et al . Response of root distribution and biomass allocation of different Poa L. varieties to drought stress. Acta Agrestia Sinica, 2009, 17(6): 813-816. [23] Shan L, Deng X P, Su P, et al . Exploitation of crop drought resistance and water-saving potentials-adaptability of the crops to the low and variable water condition. Journal of Agricultural Science and Technology, 2005, 2(2): 66-70. [24] Eissenstat D M. Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition, 1992, 15(6-7): 763-782. [25] Trubat R, Cortina J, Vilagrosa A. Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees, 2006, 20(3): 334-339. [26] McCully M E. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annual Review of Plant Biology, 1999, 50(1): 695-718. [27] Feng G L, Luo Y P, Yang P L, et al . Effect of soil water on growth and development of primary and adventitious root of winter wheat. Acta Agronomica Sinica, 1998, 24(6): 698-704. [28] Sultan S E. Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology, 2001, 82(2): 328-343. [29] Wu G L, Chen M, Du G Z. Effects of nutrient and light on seedlings morphological plasticity of four Saussurea species with different ecological breadth. Chinese Journal of Applied Ecology, 2008, 19(8): 1708-1713. [30] Fitter A H. Characteristics and functions of root systems. Plant Roots: the Hidden Half, 1991, 2: 1-29. [31] Xu B C, Gao Z J, Wang J, et al . Morphological changes in roots of Bothriochloa ischaemum intercropped with Lespedeza davurica following phosphorus application and water stress. Plant Biosystems, 2015, 149(2): 298-306. [32] Mokany K, Ash J. Are traits measured on pot grown plants representative of those in natural communities? Journal of Vegetation Science, 2008, 19(1): 119-126. [33] Yoshimura K, Masuda A, Kuwano M, et al . Programmed proteome response for drought avoidance/tolerance in the root of a C 3 xerophyte (wild watermelon) under water deficits. Plant and Cell Physiology, 2008, 49(2): 226-241. [34] Saidi A, Ookawa T, Hirasawa T. Responses of root growth to moderate soil water deficit in wheat seedlings. Plant Production Science, 2010, 13(3): 261-268. [35] Zhang X Q,Wu K H. Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae, 2001, 37(3): 126-138. [2] 种培芳, 李航逸, 李毅. 荒漠植物红砂根系对干旱胁迫的生理响应. 草业学报, 2015, 24(1): 72-80. [3] 袁永慧, 邓西平, 黄明丽, 等. 生物节水中的补偿效应与根系调控研究. 中国农业科技导报, 2003, 5(6): 24-28. [6] 赵国靖, 徐伟洲, 郭亚力, 等. 达乌里胡枝子根系形态特征对土壤水分变化的响应. 应用与环境生物学报, 2014, 20(3): 484-490. [8] 丁红, 张智猛, 戴良香, 等. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应. 生态学报, 2013, 33(17): 5169-5176. [9] 山仑, 苏佩, 郭礼坤, 等. 不同类型作物对干湿交替环境的反应. 西北植物学报, 2000, 20(2): 164-170. [10] 韦兰英, 上官周平. 黄土高原白羊草, 沙棘和辽东栎细根比根长特性. 生态学报, 2006, 26(12): 4164-4170. [11] 李琪, 张金屯, 高洪文. 山西高原三种白羊草群落的生物量研究. 草业学报, 2003, 12(1): 53-58. [12] 吴东丽, 上官铁梁, 高洪文. 山西东南部白羊草群落植物种多样性研究. 草地学报, 2002, 10(4): 237-243. [13] 李登武, 张文辉, 任争争. 黄土沟壑区狼牙刺群落优势种群生态位研究. 应用生态学报, 2005, 16(12): 2231-2235. [14] 张娜, 梁一民. 干旱气候对白羊草群落土壤水分和地上部生长的初步观察. 生态学报, 2000, 20(6): 964-970. [15] 张娜, 梁一民. 干旱气候对白羊草群落地下部生长影响的初步观察. 应用生态学报, 2002, 13(7): 827-832. [17] 董宽虎. 山西白羊草草地生产性能, 种群生态位及草地培育的研究[D]. 北京: 中国农业大学, 2004. [20] 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, (19): 5140-5150. [21] 谷艳芳, 丁圣彦, 高志英, 等. 干旱和复水对冬小麦光合产物分配格局的影响. 中国工程科学, 2012, 14(3): 59-64. [22] 金不换, 陈雅君, 吴艳华, 等. 早熟禾不同品种根系分布及生物量分配对干旱胁迫的响应. 草地学报, 2009, 17(6): 813-816. [23] 山仑, 邓西平, 苏佩, 等. 挖掘作物抗旱节水潜力——作物对多变低水环境的适应与调节. 中国农业科技导报, 2005, 2(2): 66-70. [27] 冯广龙, 罗远培, 杨培岭, 等. 土壤水分对冬小麦初生根、次生根生长发育的影响. 作物学报, 1998, 24(6): 698-704. [29] 武高林, 陈敏, 杜国祯. 营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影响. 应用生态学报, 2008, 19(8): 1708-1713. [35] 张小全, 吴可红. 森林细根生产和周转研究. 林业科学, 2001, 37(3): 126-138. |