[1] Umali D L. Irrigation-induced Salinity: a Growing Problem for Development and the Environment[M]. Washington: World Bank Publications, 1993. [2] Chen L G. Sustainable development of agriculture and sustainable use of farm land resources in China. Journal of Anhui Agricultural Univerdity, 2001, 28(1): 102-105. [3] Flowers T, Yeo A. Breeding for salinity resistance in crop plants: where next?. Functional Plant Biology, 1995, 22(6): 875-884. [4] Flowers T, Troke P, Yeo A. The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 1977, 28(1): 89-121. [5] Shi S L, Li J H. Ecological adaptability and aultivating techniques of two festuca Varieties. Acta Agretia Sinica, 2006, 14(1): 39-42. [6] Siegel M, Latch G, Johnson M. Fungal endophytes of grasses. Annual Review of Phytopathology, 1987, 25(1): 293-315. [7] White J F, Martin T I, Cabral D. Endophyte-host associations in grasses. XXII. Conidia formation by Acremonium endophytes on the phylloplanes of Agrostis hiemalis and Poa rigidifolia . Mycologia, 1996, 88(2): 174-178. [8] Moy M, Belanger F, Duncan R, et al . Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis, 2000, 28(4): 291-302. [9] Dugan F, Sitton J, Sullivan R, et al . The Neotyphodium endophyte of wild barley ( Hordeum brevisubulatum subsp. violaceum ) grows and sporulates on leaf surfaces of the host. Symbiosis, 2002, 32(2): 147-159. [10] Tadych M, Bergen M, Dugan F M, et al . Evaluation of the potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla . Mycological Research, 2007, 111(4): 466-472. [11] Bacon C W, Siegel M R. Endophyte parasitism of tall fescue. Journal of Production Agriculture, 1988, 1(1): 45-55. [12] Schardl C L, Phillips T D. Protective grass endophytes: where are they from and where are they going?. Plant Disease, 1997, 81(5): 430-438. [13] Sabzalian M R, Hatami B, Mirlohi A. Mealybug, Phenococcus solani , and barley aphid, Sipha maydis , response to endophyte-infected tall and meadow fescues. Entomologia Experimentalis et Applicata, 2004, 113(3): 205-209. [14] Arachevaleta M, Bacon C, Hoveland C, et al . Effect of the tall fescue endophyte on plant response to environmental stress. Agronomy Journal, 1989, 81(1): 83-90. [15] Buck D, Getz C, Guthman J. From farm to table: The organic vegetable commodity chain of Northern California. Sociologia Ruralis, 1997, 37(1): 3-20. [16] Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. [17] Reza Sabzalian M, Mirlohi A. Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. Journal of Plant Nutrition and Soil Science, 2010, 173(6): 952-957. [18] Nan Z B, Li C J. Roles of the grass- Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. [19] Jin W J, Li C J, Nan Z B. Biological and physiologial charateristics of Neotyphodium endophyte symbiotic with Festuca sinensis . Mycosystema, 2009, (3): 363-369. [20] Yang Y. Neotyphodium Endophyte in Festuca sinensis and Effect on Cold Tolerance to Host[D]. Lanzhou: Lanzhou University, 2010. [21] Peng Q Q. Effect of Neotyphodium Endophyte on Chilling Tolerance to Festuca sinensis [D]. Lanzhou: Lanzhou University, 2012. [22] Yao X, Li X Z, Zhu X X, et al . Effects of two fungicides on Neotyphodium seed-borne fungal endophyte of Festuca sinensis . Pratacultural Science, 2013, 30(10): 1517-1522. [23] Peng Q Q, Li C J, Song M L, et al . Effects of seed hydropriming on growth of Festuca sinensis infected with Neotyphodium endophyte. Fungal Ecology, 2013, 6(1): 83-91. [24] Wang Y R. Current status of seed priming reseach. Acta Prataculturae Sinica, 2004, 13(4): 7-12. [25] Ma R X, Wang Y R. Advances in seed hydro-priming research. Acta Prataculturae Sinica, 2008, 17(6): 141-147. [26] Li W, McDonald M, Bennett M, et al . Hydropriming of differing sized impatiens ‘Expo Wine’seeds. Seed Science and Technology, 2005, 33(3): 639-646. [27] Taylor A G, Allen P S, Bennett M A, et al . Seed enhancements. Seed Science Research, 1998, 8(2): 245-256. [28] Wang Y P, Wang Y X, Bai X L, et al . Effects of exogenous silicon on melon seed germination and the growth of seedling under NaCl stress. Acta Prataculturae Sinica, 2015, 24(5): 108-116. [29] Wang Z F. Effects of Endophyte Infection on Salt Tolerance of Wild Barely ( Hordeum brevisubulatum )[D]. Lanzhou: Lanzhou University, 2009. [30] Gou X Y. Effects of Neotyphodium Endophyte on Salt Tolerance to Drunken Horse Grass ( Achnatherum inebrians )[D]. Lanzhou: Lanzhou University, 2007. [31] Zabalgogeazcoa I, Romo M, Keck E, et al . The infection of Festuca rubra subsp. pruinosa by Epichloё festucae. Grass and Forage Science, 2006, 61(1): 71-76. [32] Song M L, Chai Q, Li X Z, et al . An asexual Epichloё endophyte modifies the nutrient stoichiometry of wild barley ( Hordeum brevisubulatum ) under salt stress. Plant and Soil, 2014, 387(1-2): 153-165. [33] Ren A Z, Gao Y B, Zhang J, et al . Effect of endophyte infection on salt resistance of ryegrass. Acta Ecologica Sinica, 2006, 26(6): 1750-1757. [34] Simpson W, Hume D. An examination of the potential mitigation effect of Neotyphodium infection on grasses exposed to elevated salt concentration[C]. Proceedings of the Fourth International Neotyphodium /Grass Interactions Symposium, Soest, Germany, 2000: 381-385. [35] Ren A Z, Gao Y B, Li X. Effect of fungal endophyte infection on some physiological characters of Lolium perenne under drought conditons. Chinese Journal of Applied and Environmental Biology, 2002, 8(5): 535-539. [36] Chen L. Effects of Hydro-Priming on the Germination and Emergence of Kentucky Bluegrass ( Poa pratensis ) Varieties[D]. Lanzhou: Lanzhou University, 2006. [37] Jiang X W, Zhang W M, Yao D N, et al . Effect of priming on seed germination and vigor of Festuca arundinacea . Seed, 2008, 26(11): 14-21. [38] Liu H X. Hydro-priming in Seed of Alfalfa ( Medicago sativa )[D]. Lanzhou: Lanzhou University, 2007. [39] Carrillo G M, Bautista-Calles F, Villegas Monter A.Post harvest seed treatments to improve the papaya seed germination and seedlings development. Tropical and Subtropical Agroecosystems, 2013, 16(1): 133-141. [40] Sun M, Yang Z T, Zhang C L, et al . Hydro-priming technique and its resistance physiogy effect for sea buckthorn seed. Scientia Silvae Sinicae, 2014, 50(12): 32-39. [2] 陈利根. 中国农业可持续发展与耕地资源可持续利用. 安徽农业大学学报, 2001, 28(1): 102-105. [5] 师尚礼, 李锦华. 羊茅属两种牧草生态适应性及其栽培技术. 草地学报, 2006, 14(1): 39-42. [18] 南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. [19] 金文进, 李春杰, 南志标. 中华羊茅内生真菌 Neotyphodium sp. 生物学与生理学特性的研究. 菌物学报, 2009, (3): 363-369. [20] 杨洋. 中华羊茅内生真菌及其对宿主抗寒性的影响[D]. 兰州: 兰州大学, 2010. [21] 彭清青. Neotyphodium 内生真菌对中华羊茅耐寒性的影响[D]. 兰州: 兰州大学, 2012. [22] 姚祥, 李秀璋, 朱小晓, 等. 两种杀菌剂对中华羊茅种传内生真菌的影响. 草业科学, 2013, 30(10): 1517-1522. [24] 王彦荣. 种子引发的研究现状. 草业学报, 2004, 13(4): 7-12. [25] 马瑞霞, 王彦荣. 种子水引发的研究进展. 草业学报, 2008, 17(6): 141-147. [28] 王玉萍, 王映霞, 白向利, 等. 硅对NaCl胁迫下甜瓜种子萌发及幼苗生长的影响. 草业学报, 2015, 24(5): 108-116. [29] 王正凤. 内生真菌对野大麦耐盐性影响的研究[D]. 兰州: 兰州大学, 2009. [30] 缑小媛. 内生真菌对醉马草耐盐性的影响研究[D]. 兰州: 兰州大学, 2007. [33] 任安芝, 高玉葆, 章瑾, 等. 内生真菌感染对黑麦草抗盐性的影响. 生态学报, 2006, 26(6): 1750-1757. [35] 任安芝, 高玉葆, 李侠. 内生真菌感染对黑麦草若干抗旱生理特征的影响. 应用与环境生物学报, 2002, 8(5): 535-539. [36] 陈露. 水引发对草地早熟禾( Poa pratensis )萌发与出苗的影响[D]. 兰州: 兰州大学, 2006. [37] 江绪文, 张文明, 姚大年, 等. 水引发处理对高羊茅种子萌发及活力的影响. 种子, 2008, 26(11): 14-21. [38] 刘慧霞. 紫花苜蓿种子水引发研究[D]. 兰州: 兰州大学, 2007. [40] 孙妙, 杨周婷, 张存莉, 等. 中国沙棘种子的水引发技术及其抗性生理效应. 林业科学, 2014, 50(12): 32-39. |