[1] Qiu B Y. Genetic Analysis of Rice Cr-Tolerance and Mechanism Study of GSH-Alleviating Effect on Cr Toxicity[D]. Hangzhou: Zhejiang University, 2012.
[2] Liu W, Li Z Q. Progress on research of treating Cr containing waste water. Guangdong Trace Elements Science, 2008, 14(9): 5-9.
[3] Zeng F, Wu X, Qiu B, et al . Physiological and proteomic alterations in rice ( Oryza sativa L.) seedlings under hexavalent chromium stress. Planta, 2014, 240(2): 291-308.
[4] Emamverdian A, Ding Y, Mokhberdoran F, et al . Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 10: 1-18.
[5] Gill R A, Ali B, Islam F, et al . Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiology and Biochemistry, 2015, 94: 130-143.
[6] Wang A Y, Zhong G F, Xu G B, et al . Effects of Cr(VI) stress on physiological characteristics of Brassica juncea and its Cr uptake. Environmental Science, 2011, 32(6): 1717-1725.
[7] Xu X, Yang F, Yin C Y, et al . Research advances in sex-specific responses of dioecious plants to environmental stresses. Chinese Journal of Applied Ecology, 2007, 18(11): 2626-2631.
[8] Chen J, Li C Y. Sex-specific responses to environmental stresses and sexual competition of dioecious plants. Chinese Journal of Applied and Environmental Biology, 2014, 20(4): 743-750.
[9] He M, Meng M, Shi D W, et al . On gender difference of dioecious plant in response to drought stress. Journal of Plant Resources and Environment, 2015, 24(1): 99-106.
[10] Yang S, Wang B X, Xu X, et al . Sex-specific responses of flowering phenology and flora morphology of Humulus scandens to drought. Plant Diversity and Resources, 2014, 36(5): 653-660.
[11] Bland J S, Minich D, Lerman R, et al . Isohumulones from hops ( Humulus lupulus ) and their potential role in medical nutrition therapy. Pharma Nutrition, 2015, 3(2): 46-52.
[12] Strese E M K, Lundström M, Hagenblad J, et al . Genetic diversity in remnant Swedish hop ( Humulus lupulus L.) yards from the 15th to 18th century. Economic Botany, 2014, 68(3): 231-245.
[13] Liu J P, You M H, Duan J, et al . Plasticity of reproductive strategy of dioecious Humulus scandens in response to variation in water deficit stress. Acta Prataculturae Sinica, 2015, 24(3): 226-232.
[14] Berry J A, Downton W J S. Environmental regulation of photosynthesis. Photosynthesis, 1982, 2: 263-343.
[15] Hodges D M, DeLong J M, Forney C F, et al . Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207(4): 604-611.
[16] Zhang Z L, Zhai W Q. Plant Physiology Experiment Instruction[M]. Beijing: Higher Education Press, 2004: 67-70.
[17] Lichtenthaler, Hartmut K. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 1987, 148: 350-382.
[18] Lu W, Chen L, Wang W, et al . Effects of sea level rise on mangrove Avicennia population growth, colonization and establishment: evidence from a field survey and greenhouse manipulation experiment. Acta Oecologica, 2013, 49: 83-91.
[19] Choudhury S, Panda S K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water, Air, and Soil Pollution, 2005, 167(1-4): 73-90.
[20] Dixit V, Pandey V, Shyam R. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea ( Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell & Environment, 2002, 25(5): 687-693.
[21] Bonet A, Poschenrieder C, Barcelo J. Chromium III-iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content. Journal of Plant Nutrition, 1991, 14(4): 403-414.
[22] Sharma D C, Sharma C P, Tripathi R D. Phytotoxic lesions of chromium in maize. Chemosphere, 2003, 51(1): 63-68.
[23] Shanker A K, Djanaguiraman M, Sudhagar R, et al . Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram ( Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Science, 2004, 166(4): 1035-1043.
[24] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[25] Xu X, Li Y, Wang B, et al . Salt stress induced sex-related spatial heterogeneity of gas exchange rates over the leaf surface in Populus cathayana Rehd. Acta Physiologiae Plantarum, 2015, 37(1): 1-10.
[26] Chen L, Han Y, Jiang H, et al . Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis . Journal of Experimental Botany, 2011, 62(14): 5037-5050.
[27] Dawson T E, Ehleringer J R. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo . Ecology, 1993, 74: 798-815.
[28] Wang X P, Hua C, Chen Q Z, et al . Effects of Cr 3+ stress on the content of chlorophyll and the activity of antioxidant enzymes in Shepherdspurse seedlings. Hubei Agricultural Sciences, 2009, 48(8): 1938-1940.
[29] Gupta S, Srivastava S, Saradhi P P. Chromium increases photosystem 2 activity in Brassica juncea . Biologia Plantarum, 2009, 53(1): 100-104.
[30] Ali S. The Interaction of Chromium with Salinity and Aluminum and Alleviation of Chromium Toxicity Through Chemical Approaches in barley[D]. Hangzhou: Zhejiang University, 2010.
[31] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Biology, 1991, 42(1): 313-349.
[32] Bukhov N G, Carpentier R. Effects of water stress on the photosynthetic efficiency of plants[M]// Advances in Photosynthesis and Respiration. Netherlands: Springer, 2004: 623-635.
[33] He J D, Xu X, Huan H H, et al . Characteristics of chlorophyll fluorescent parameters and daily dynamics of photosynthesis in female and male Populus cathayana cutting seedlings. Bulletin of Botanical Research, 2014, 34(2): 219-225.
[34] Herppich W B, Peckmann K. Influence of drought on mitochondrial activity, photosynthesis, nocturnal acid accumulation and water relations in the CAM plants Prenia sladeniana (ME-type) and Crassula lycopodioides (PEPCK-type). Annals of Botany, 2000, 86(3): 611-620.
[35] Xie Y H, Ji X H, Huang J, et al . Cadmium security analysis of different organic materials and passivators under ryegrass-Guimu 1 hybrid rotation in soils with low Cd environmental capacity. Acta Prataculturae Sinica, 2015, 24(3): 30-37.
[36] Qin F, Xu X, Liu G, et al . Sexual differences in physiological tolerance and accumulation capacity against lead pollution in Morus alba seedlings. Acta Scientiae Circumstantiae, 2014, 34(10): 2615-2623.
[37] Li J Y, Xu X, Yang P, et al . Effects of aluminum stress on ecophysiological characteristics of male and female Populus cathayana seedlings. Chinese Journal of Applied Ecology, 2012, 23(1): 45-50.
[1] 裘波音. 水稻铬胁迫耐性的遗传分析与还原型谷胱甘肽缓解铬毒害的机理研究[D]. 杭州: 浙江大学, 2012.
[2] 刘婉, 李泽琴. 水中铬污染治理的研究进展. 广东微量元素科学, 2008, 14(9): 5-9.
[6] 王爱云, 钟国锋, 徐刚标, 等. 铬胁迫对芥菜型油菜生理特性和铬富集的影响. 环境科学, 2011, 32(6): 1717-1725.
[7] 胥晓, 杨帆, 尹春英, 等. 雌雄异株植物对环境胁迫响应的性别差异研究进展. 应用生态学报, 2007, 18(11): 2626-2631.
[8] 陈娟, 李春阳. 环境胁迫下雌雄异株植物的性别响应差异及竞争关系. 应用与环境生物学报, 2014, 20(4): 743-750.
[9] 何梅, 孟明, 施大伟, 等. 雌雄异株植物对干旱胁迫响应的性别差异. 植物资源与环境学报, 2015, 24(1): 99-106.
[10] 杨帅, 王碧霞, 胥晓, 等. 葎草雌雄植株开花物候和花器官对干旱的响应差异. 植物分类与资源学报, 2014, 36(5): 653-660.
[13] 刘金平, 游明鸿, 段婧, 等. 水分胁迫下雌雄异株植物葎草繁殖策略的可塑性调节. 草业学报, 2015, 24(3): 226-232.
[16] 张志良, 翟伟菁. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2004: 67-70.
[28] 王小平, 华春, 陈全战, 等. Cr 3+ 胁迫对荠菜幼苗叶绿素含量及抗氧化酶活性的影响. 湖北农业科学, 2009, 48(8): 1938-1940.
[30] Ali S. 大麦铬与盐, 铝的互作和减轻铬毒害的化学途径研究[D]. 杭州: 浙江大学, 2010.
[33] 贺俊东, 胥晓, 郇慧慧, 等. 青杨雌雄扦插苗光合作用日变化与叶绿素荧光参数特征. 植物研究, 2014, 34(2): 219-225.
[35] 谢运河, 纪雄辉, 黄涓, 等. 有机物料和钝化剂对低 Cd 环境容量土壤黑麦草与桂牧1号轮作的 Cd 安全分析. 草业学报, 2015, 24(3): 30-37.
[36] 秦芳, 胥晓, 刘刚, 等. 桑树 ( Morus alba ) 幼苗对铅污染的生理耐性和积累能力的性别差异. 环境科学学报, 2014, 34(10): 2615-2623.
[37] 李俊钰, 胥晓, 杨鹏, 等. 铝胁迫对青杨雌雄幼苗生理生态特征的影响. 应用生态学报, 2012, 23(1): 45-50. |