[1] Wang S M, Zhu X Y, Shu X X. Studies on the characteristics of ion absorption and distribution in Puccinellia tenuiflora . Pratacultural Science, 1994, 3(1): 39-43. 王锁民, 朱兴运, 舒孝喜. 碱茅离子吸收与分配特性的研究. 草业科学, 1994, 3(1): 39-43. [2] Zhu X Y, Wang S M, Yan S G, et al . The research progresses of plant resistance to salt and its mechanism of resistance in the genus Puccinellia . Pratacultural Science, 1994, 11(3): 9-15. 朱兴运, 王锁民, 阎顺国, 等. 碱茅属植物抗盐性与抗盐机制的研究进展. 草业科学, 1994, 11(3): 9-15. [3] Wang S M, Zheng W J, Ren J Z, et al . Selectivity of various types of salt-resistant plants for K + over Na + . Journal of Arid Environment, 2002, 52(4): 457-472. [4] Wang C M, Zhang J L, Liu X S, et al . Puccinellia tenuiflora maintains a low Na + level under salinity by limiting unidirectional Na + influx resulting in a high selectivity for K + over Na + . Plant Cell and Environment, 2009, 32(5): 486-496. [5] Peng Y H, Zhu Y F, Mao Y Q, et al . Alkali grass resists salt stress through high [K + ] and endodermis barrier to Na + . Journal of Experimental Botany, 2004, 55: 939-949. [6] Stelzer R, Läuchli A. Salt- and flooding tolerance of Puccinellia peisonis . II. Structural differentiation of the root in relation to function. Zeitschrift für Pflanzenphysiologie, 1977, 84: 95-108. [7] Stelzer R, Läuchli A. Salt- and flooding tolerance of Puccinellia peisonis . III. Distribution and localization of ions in the plant. Zeitschrift für Pflanzenphysiologie, 1978, 88: 437-448. [8] Zhu Y J, Zhang Y, Hu Z Z, et al . Studies on the microscopic structure of Puccinellia tenuiflora roots under different salinity stress. Grassland of China, 2001, 23(1): 37-40. 朱宇旌, 张勇, 胡自治, 等. 小花碱茅根适应盐胁迫的显微结构研究. 中国草地, 2001, 23(1): 37-40. [9] Enstone D E, Peterson C A, Ma F. Root endodermis and exodermis: structure, function, and responses to the environment. Journal of Plant Growth Regulation, 2002, 21(4): 335-351. [10] Schreiber L. Transport barriers made of cutin, suberin and associated waxes. Trends in Plant Science, 2010, 15(10): 546-553. [11] Schreiber L, Hartmann K, Skrabs M, et al . Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. Journal of Experimental Botany, 1999, 50: 1267-1280. [12] Ranathunge K, Schreiber L, Franke R. Suberin research in the genomics era-new interest for an old polymer. Plant Science, 2011, 180(3): 399-413. [13] Martinka M, Dolan L, Pernas M, et al . Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana . Annals of Botany, 2012, 110(2): 361-371. [14] Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story. Genome Biology, 2000, 1(6): 1-9. [15] Nawrath C. The biopolymers cutin and suberin. The Arabidopsis Book, 2002, 1: e0021. [16] Franke R, Briesen I, Wojciechowski T, et al . Apoplastic polyesters in Arabidopsis surface tissues-a typical suberin and a particular cutin. Phytochemistry, 2005, 66(22): 2643-2658. [17] Beisson F, Li-Beisson Y, Bonaventure G, et al . The acyltransferase GPAT5 is required for the synthesis of suberin in the seed coat and root of Arabidopsis. Plant Cell, 2007, 19(1): 351-368. [18] Franke R, Schreiber L. Suberin-a biopolyester forming apoplastic plant interfaces. Current Opinion in Plant Biology, 2007, 10(3): 252-259. [19] Pollard M, Beisson F, Li Y, et al . Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 2008, 13(5): 236-246. [20] Höfer R, Briesen I, Beck M, et al . The Arabidopsis cytochrome P450 CYP 86 A 1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. Journal of Experimental Botany, 2008, 59(9): 2347-2360. [21] Serra O, Soler M, Hohn C, et al . CYP 86 A 33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiology, 2009, 149(2): 1050-1060. [22] Fire A, Xu S, Montgomery M K, et al . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature, 1998, 391: 806-811. [23] Waterhouse P M, Graham M W, Wang M B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, 1998, 95(23): 13959-13964. [24] Hammond S M, Bernstein E, Beach D, et al . An RNA directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404: 293-296. [25] Burch-Smith T M, Miler J L. PTGS approaches to large-scale functional genomics in plants[M]//Hannon G, ed. RNAi: A Guide to Gene Silencing. New York: Cold Spring Harbor Laboratory Press, 2003: 243-263. [26] Elbashir S M, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22- nucleotide RNAs. Genes and Development, 2001, 15(2): 188-200. [27] Altschul S F, Gish W, Miller W, et al . Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403-410. |