[1] Gillingham A K, Munro S.The small G proteins of the Arf family and their regulators. Annual Review of Cell and Developmental Biology, 2007, 23(23): 579-611. [2] Tanabe K, Torii T, Natsume W, et al. A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. Molecular Biology of the Cell, 2005, 16(4): 1617-1628. [3] Lanoix J, Ouwendijk J, Lin C, et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO Journal, 1999, 18(18): 4935-4948. [4] Moss J, Vaughan M.Molecules in the ARF orbit. Journal of Biological Chemistry, 1998, 273(34): 21431-20434. [5] Pimpl P, Hanton S L, Taylor J P, et al. The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lyticvacuole.Plant Cell, 2003, 15: 1242-1256. [6] Moss J, Vaughan M.Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. Journal of Biological Chemistry, 1995, 270(21): 12327-12330. [7] Poon P P, Cassel D, Huber I, et al. Expression, analysis, and properties of yeast ADP-ribosylation factor (ARF) GTPase activating proteins (GAPs) Gcs1 and Glo3. Methods Enzymol, 2001, 329: 317-324. [8] Yahara N, Sato K, Nakano A.The Arf1p GTPase-activating protein Glo3p executes its regulatory function through a conserved repeat motif at its C-terminus. Journal of Cell Science, 2006, 119(12): 2604-2612. [9] Zhuang X L, Jiang J F, Li J H, et al. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant Journal, 2006, 48(4): 581-591. [10] Liljegren S J, Leslie M E, Darnielle L, et al. Regulation of membrane trafficking and organ separation by the nevershed ARF-GAP protein. Development, 2009, 136(11): 1909-1918. [11] Liu B L, Zhang N, Wen Y K, et al. Identification of differentially expressed genes in potato associated with tuber dormancy release. Molecular Biology Reports, 2012, 39(12): 11277-11287. [12] Du Y P, Li S, He H B, et al. Comparative of methods for RNA extraction from Lily bulb scales. Molecular Plant Breeding, 2010, 8(4): 832-836. 杜运鹏, 李双, 何恒斌, 等. 百合鳞片总RNA提取方法的比较. 分子植物育种, 2010, 8(4): 832-836. [13] Feng D L, Lai Y, He S L.Cloning, characterization and expression of an ArfGAP gene from pepper (Capsicum annuum L.). Chinese Agricultural Science Bulletin, 2012, 28(34): 184-189. 冯冬林, 赖燕, 何水林. 辣椒ArfGAP基因的克隆与表达分析. 中国农学通报, 2012, 28(34): 184-189. [14] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. [15] Liu K D, Li H L, Zhong S T, et al. Cloning, subcellular localization and expression analysis of AsAG from sugar apple (Annona spuamosa L.). Scientia Agricultura Sinica, 2016, 49(1): 142-154. 刘锴栋, 黎海利, 钟舒婷, 等. 番荔枝花器官发育基因AsAG的克隆, 亚细胞定位及表达分析. 中国农业科学, 2016, 49(1): 142-154. [16] Liu F, Wang J Y, Wang X L, et al. The apical bud cell ultra-structure changes of Lilium pumilum bulbs during breaking dormancy under refrigerated condition. Acta Horticulturae Sinica, 2013, 40(6): 1110-1118. 刘芳, 王家艳, 王晓丽, 等. 细叶百合鳞茎在低温解除休眠过程中茎尖细胞超微结构的变化. 园艺学报, 2013, 40(6): 1110-1118. [17] Zuk M, Prescha A, Keüpczynaski J, et al. ADP ribosylation factor regulates metabolism and antioxidant capacity of transgenic potato tuber. Journal of Agricultural and Food Chemistry, 2003, 51: 288-294. [18] Sun H M, Li T L, Li Y F.Starch metabolism and sprouting of bulb in Lilium davidii var. unicolor stored at different cold temperatures. Acta Horticulturae Sinica, 2004, 31(3): 337-342. 孙红梅, 李天来, 李云飞. 不同贮藏温度下兰州百合种球淀粉代谢与萌发关系初探. 园艺学报, 2004, 31(3): 337-342. [19] Liu F, Li D D, Lian H, et al. Relationship between dormancy breaking and protective enzymes in refrigerated Lilium pumilum bulbs. Acta Prataculturae Sinica, 2015, 24(12): 180-187. 刘芳, 李丹丹, 廉华, 等. 细叶百合冷藏过程中鳞茎保护酶活性与休眠解除的关系. 草业学报, 2015, 24(12): 180-187. [20] Chen P W, Jian X, Luo R, et al. Simple in vitro assay of Arf GAPs and preparation of Arf proteins as substrates. Methods in Cell Biology, 2015, 30: 69-80. [21] Kartberg F, Asp L, Dejgaard S Y, et al. ARFGAP2 and ARFGAP3 are essential for COPI coat assembly on the Golgi membrane of living cells. Journal of Biological Chemistry, 2010, 285(47): 36709-36720. [22] Oix J, Ouwendijk J, Stark A, et al. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. Journal of Cell Biology, 2001, 155(7): 1199-1212. [23] Ismail S A, Vetter I R, Sot B, et al. The structure of an Arf-ArfGAP complex reveals a Ca2+ regulatory mechanism. Cell, 2010, 141(5): 812-821. [24] Spang A, Shiba Y, Randazzo P A.ArfGAPs: gatekeepers of vesicle generation. FEBS Letters, 2010, 584(12): 2646-2651. [25] Dodonova S O, Diestelkoetter-Bachert P, von Appen A, et al. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science, 2015, 349(6244): 195-198. [26] Sparkes I A, Ketelaar T, De Ruijter N C A, et al. Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic, 2009, 10(5): 567-571. |