[1] Mei C, Sasmita M, Scott A, et al. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. Journal of Plant Physiology, 2014, 171: 3-4. [2] Liu L C, Jiang C C, Dong X C, et al. Effects of boron deficiency on cellular structures of maturation zone from root tips and functional leaves from middle and upper plant in trifoliate orange rootstock. Scientia Acricultura Sinica, 2015, 48(24): 4957-4964. 刘磊超, 姜存仓, 董肖昌, 等. 硼胁迫对枳橙砧木细根根尖成熟区和幼嫩叶片细胞结构的影响. 中国农业科学, 2015, 48(24): 4957-4964. [3] Jiang S Y, Bachmann D, La H G, et al. Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Molecular Biology, 2007, 4: 385-502. [4] Zhang W J, Deng B, Zhang Y W, et al. Effect on the leaf microstructure of different alfalfa varieties from spaceflight. Acta Agrestia Sinica, 2010, 18(2): 233-236. 张文娟, 邓波, 张蕴薇, 等. 空间飞行对不同紫花苜蓿品种叶片显微结构的影响. 草地学报, 2010, 18(2): 233-236. [5] Feng P, Liu R T, Li J, et al. Effects of satellite carrying on photosynthesis characteristics, microstructure and ultrastructure of different moisture content of alfalfa seeds. Journal of Nuclear Agricultural Sciences, 2009, 23(4): 561-565. 冯鹏,刘荣堂,李健, 等. 不同含水量紫花苜蓿种子空载后当代叶片显微和超微结构研究. 核农学报,2009, 23(4): 561-565. [6] Xia Z R, Du F F, Li S, et al. Construction of an EMS induced mutant library and identificatin of morphological characteristics in Medicago sativa. Acta Prataculturae Sinica, 2014, 23(2): 215-222. 夏曾润, 杜凤凤, 李偲, 等. 紫花苜蓿EMS突变体库的构建和形态学性状鉴定. 草业学报, 2014, 23(2): 215-222. [7] Zhang Y W, Ren W B, Liu M, et al. Study on peroxidase and esterase isoenzymes and the ultrastructure of the space induced mutant leaves of Sainfoin (Onobrychis viciaefolia Scop.). Acta Agrestia Sinica, 2004, 12(3): 223-226. 张蕴薇, 任卫波, 刘敏, 等. 红豆草空间诱变突变体叶片同工酶及细胞超微结构分析. 草地学报, 2004, 12(3): 223-226. [8] Loutou M, Hajjaji M, Mansori M, et al. Heated blends of phosphate waste: Microstructure characterization, effects of processing factors and use as a phosphorus source for alfalfa growth. Journal of Environmental Management, 2016, 4: 337-345. [9] Zhu H S, Zhang Y, Dong K H, et al. Effect of drought stress on microstrutural characteristic changes of Medicago sativa ‘Pingguan’. Acta Prataculturae Sinica, 2015, 23(4): 771-779. 朱慧森, 张垚, 董宽虎, 等. 干旱胁迫下偏关苜蓿显微结构响应特征研究. 草业学报, 2015, 23(4): 771-779. [10] Peguero P J, Gil-Pelegrín E, Morales F.Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue. Photosynthesis Research, 2008, 1: 49-61. [11] Wang J, Zhang J, Yang J H, et al. Effects of enhanced UV-B radiation on the leaves microstructure of cotton. Xinjiang Agricultural Sciences, 2010, 47(8): 1619-1626. 王进, 张静, 杨景辉, 等. UV-B辐射增强对棉花叶片显微结构的影响. 新疆农业科学, 2010, 47(8): 1619-1626. [12] Li X F, Ni Z M, Wu Y Y, et al. Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yinhong’ grape seedlings. Acta Ecologica Sinica, 2015, 35(13): 4436-4444. 李学孚, 倪智敏, 吴月燕, 等. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响. 生态学报, 2015, 35(13): 4436-4444. [13] Suriyan C, Kanyaratt S W, Chalermpol K.Comparative effects of salt stress and extreme pH stress combined on glycinebetaine accumulation, photosynthetic abilities and growth characters of two rice genotypes. Rice Science, 2009, 16(4): 274-282. [14] He J P, Zhu J C, Wang J P, et al. The relationship between seedling microtructure and cold resistance of Brassica napus. Jiangsu Journal of Agricultural Sciences, 2017, 33(1): 19-26. 何俊平, 朱家成, 王建平, 等. 甘蓝型油菜幼苗显微组织结构与抗寒性的关系. 江苏农业学报, 2017, 33(1): 19-26. [15] Tian C X, Zhang Y M, Wang K, et al. The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO3. Acta Prataculturae Sinica, 2014, 23(5): 133-142. 田晨霞, 张咏梅, 王凯, 等. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应. 草业学报, 2014, 23(5): 133-142. [16] Suarez N.Comparative leaf anatomy and pressure-volume analysis in plants of ipomoea pes-caprae experimenting saline and/or drought stress. International Journal of Botany, 2011, 7(1): 53-62. [17] Pavel L, Paul K, Alexander Z, et al. Recrystallization-based formation of uniform fine-grained austenite structure before polymorphic transition in high-strength steels for arctic applications. International Journal of Mechanical and Materials Engineering, 2016, 11(1): 55-59. [18] Pang Y, Meng Z D, Li X F, et al. Analysis of anatomical structure on tea leaves in Shandong province. Journal of Tea Sciences, 2014, (3): 190-196. 房用, 孟振农, 李秀芬, 等. 山东茶树叶片解剖结构分析. 茶叶科学, 2014, (3): 190-196. [19] Feng P.Effects of alfalfa seed moisture content on mutagenic of satellite carrying. Lanzhou: Gansu Agricultural University, 2008. 冯鹏. 紫花苜蓿种子含水量对卫星搭载诱变效应的影响. 兰州: 甘肃农业大学, 2008. [20] Zhang Y W, Han J G, Ren W B, et al. Breeding by spaceflight mutagenesis and its application in forage breeding. Pratacultural Science, 2005, 2(10): 59-63. 张蕴微, 韩建国, 任卫波, 等. 植物空间诱变育种及其在牧草上的应用. 草业科学, 2005, 2(10): 59-63. [21] Sun D Y, Zhang J X, Chen G Z, et al. Achievements and perspective outlook of space induced Mutation breeding for the rice blast resistance. Journal of Nuclear Agricultural Sciences, 2017, 31(2): 271-279. 孙大元, 张景欣, 陈冠州, 等. 空间诱变选育抗稻瘟病水稻品种研究进展与展望. 核农学报, 2017, 31(2): 271-279. [22] Ma Y, Cheng Z, Wang W, et al. Proteomic analysis of high yield rice variety mutated from spaceflight. Advances in Space Research, 2007, 40(4): 535-539. [23] Bonaventura R, Poma V, Costa C, et al. UV-B radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochemical and Biophysical Research Communications, 2005, 328(1): 150-157. [24] Guo Y H, Xie L B, Meng F J, et al. Change of photosythetic, pigment and ulstructure sweet pepper leaves after space induction. Journal of Nuclear Agricultural Sciences, 2011, 25(2): 237-241. 郭亚华, 谢立波, 孟凡娟, 等. 空间诱变后甜椒叶片光合、色素和超微结构的变化. 核农学报, 2011, 25(2): 237-241. [25] Nechitailo G S, Lu J Y, Xue H.Influence of long term exposure to space flight on tomato seeds. Advances in Space Research, 2005, 36(7): 1329-1333. [26] Zhao H B.Studies on chlorophyll-deficient wheat mutants induced by spaceflight environment. Beijing: Chinese Academy Agriculture Sciences, 2010. 赵洪兵. 空间环境诱变小麦叶绿素缺失突变体的研究. 北京: 中国农业科学院, 2010. [27] Yang F X, Dong J M, Yang X X.Variations of the ultrastructure of the leaf cell of cotton under low temperature. Journal of Shanxi Agricultural University, 2001, 16(2): 116-117. 杨凤仙, 董俊梅, 杨晓霞. 低温胁迫下棉叶叶绿体、液胞超微结构的变化. 山西农业大学学报, 2001, 16(2): 116-117. [28] Wang D M, Xu X Y, Li J, et al. Effect of heat stress on chloroplast ultrastructure changes in mesophyll cell of tomato. Acta Horticulturae Sinica, 2004, 31(6): 820-821. 王冬梅, 许向阳, 李景, 等. 热胁迫对番茄叶肉细胞叶绿体超微结构的影响. 园艺学报, 2004, 31(6): 820-821. [29] Stupnikova G, Borovskii A, Antipina V I, et al. Polymorphism of thermostable proteins in soft wheat seedlings during low-temperature acclimation. Russian Journal of Plant Physiology, 2001, 48(6): 804-810. [30] Gao J H.Genetic analysis of EAPP gene in Dongmu-70 rye and cold tolerance improvement in Cbf3 gene transgenic forage. Yangling: North West Agriculture and Forestry University, 2009. 高景慧. 冬牧70黑麦EAPP基因遗传分析与CBF3基因导入牧草提高抗寒性的研究. 杨凌: 西北农林科技大学, 2009. |