[1] Mi F G, Barre P, Qu L J, et al. Quantitative trait loci of lamina length in perennial ryegrass. Acta Agrestia Sinica, 2004, 12(4): 303-307. 米福贵, Barre Philippe, 瞿礼嘉, 等. 多年生黑麦草叶片长度数量性状位点(QTLs)研究. 草地学报, 2004, 12(4): 303-307. [2] Wilkins P W, Humphreys M O.Progress in breeding perennial forage grasses for temperate agriculture. Journal of Agricultural Science, 2003, 140(2): 129-150. [3] Hodgson J, Illius AW.The ecology and management of grazing systems. Journal of Animal Ecology 1998, 66(3): 438. [4] Bahmani I, Hazard L, Varletgrancher C, et al. Differences in tillering of long- and short-leaved perennial ryegrass genetic lines under full light and shade treatments. Crop Science, 2000, 40(4): 1095-1102. [5] Dong K H, Shen Y X.Forage production. Beijing: China Agriculture Press, 2003: 7. 董宽虎, 沈益新. 饲草生产学. 北京: 中国农业出版社, 2003: 7. [6] Xie W G, Zhang X Q, Cheng Y X.Identification and genetic variation analysis of orchardgrass hybrids (Dactylis glomerata L) by SSR molecular markers. Acta Prataculturae Sinica, 2010, 19(2): 212-217. 谢文刚, 张新全, 陈永霞. 鸭茅杂交种的SSR分子标记鉴定及其遗传变异分析. 草业学报, 2010, 19(2): 212-217. [7] Bondesen O B.Seed production and seed trade in globalised world, seed production in the northen light. Proceedings of the 6th International Herbage Seed Conference. Norway: 9-12. [8] Tosun M.Determination of hay and seed yield and some chemical characteristics of hay of wild orchardgrass (Dactylis glomerata L.). Journal of Applied Sciences, 1996, 11(20): 3510-3514. [9] Mccord P, Gordon V, Saha G, et al. Detection of QTL for forage yield, lodging resistance and spring vigor traits in alfalfa (Medicago sativa L.). Euphytica, 2014, 200(2): 269-279. [10] Pfender W F.Pathotype-specific QTL for stem rust resistance in Lolium perenne. Theoretical & Applied Genetics, 2013, 126(5): 1213-1225. [11] Liu Y L, Wang L H, Li J Q, et al. QTL mapping of forage yield and forage yield component traits in Sorghum bicolor×S. sudanense. Genetics & Molecular Research Gmr, 2015, 14(2): 3854. [12] Li X L, Yu X X, Yu Z.Studies on quantitative trait loci of ten main agronomic traits of wheatgrass. Journal of Triticeae Crops, 2013, 33(1): 44-50. 李小雷, 于肖夏, 于卓. 冰草10个主要农艺性状的QTL定位研究. 麦类作物学报, 2013, 33(1): 44-50. [13] Last L, Widmer F, Fjellstad W, et al. Genetic diversity of natural orchardgrass (Dactylis glomerata L.) populations in three regions in Europe. BMC Genetics, 2013, 14(1): 5241-5252. [14] Jiang L F, Zhang X Q, Huang L K, et al. Construction of DNA fingerprinting of dominant orchardgrass (Dactylis glomerata L) varieties of China. Journal of Plant Genetic Resources, 2014, 15(3): 604-614. 蒋林峰, 张新全, 黄琳凯,等. 中国鸭茅主栽品种DNA指纹图谱构建. 植物遗传资源学报, 2014, 15(3): 604-614. [15] Xie W G, Robins J G, Bushman B S.A genetic linkage map of tetraploid orchardgrass (Dactylis glomerata L.) and quantitative trait loci for heading date. Genome, 2012, 55(5): 360-369. [16] Zhao X X, Huang L K, Zhang X Q, et al. Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. Scientific Reports, 2016, 6: 29345. [17] Mccouch S R.Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13. [18] Sagsoz S, Tosun M.Determination of some phenological, morphological and biological characteristics of orchardgrass (Dactylis glomerata L.) collected from different locations. Erzurum, Turkey: Ataturk University, Faculty of Agriculture, 1996. [19] Lemus R, Brummer E C, Burras C L, et al. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass & Bioenergy, 2008, 32(12): 1187-1194. [20] Lu X P, Liu D D, Wang S Y, et al. Genetic effects and heterosis prediction model of Sorghum bicolor×S. sudanense grass. Acta Agronomica Sinica, 2014, 40(3): 466-475. 逯晓萍, 刘丹丹, 王树彦, 等. 高丹草遗传效应与杂种表现预测模型. 作物学报, 2014, 40(3): 466-475. [21] Mei M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical & Applied Genetics, 2004, 108(2): 280-291. [22] Meng S, He J, Zhao T, et al. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theoretical & Applied Genetics, 2016, 129(8): 1557-1576. [23] Zhao M Q, Xue H, Meng H, et al. QTL analysis of soybean oil content under 17 environments. Canadian Journal of Plant Science, 2017, 94(2): 245-261. [24] Marcotuli I, Gadaleta A, Mangini G, et al. Development of a high-density SNP-based linkage map and detection of QTL for β-Glucans, protein content, grain yield per spike and heading time in durum wheat. International Journal of Molecular Sciences, 2017, 18(6): 1329. [25] Geldermann H .Linkageand QTL mapping of the Hohenheim F2 pig families. Journal of Animal Breeding & Genetics, 2003,12:https://doi.org/10.1046/j.0931-2668.2003.00417.x [26] Cai H, Morishima H.QTL clusters reflect character associations in wild and cultivated rice. Theoretical & Applied Genetics, 2002, 104: 1217-1228 [27] Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. China Basic Science, 2008, 40(6): 761. [28] Teng F, Zhai L, Liu R, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant Journal, 2013, 73(3): 405-416. [29] Cakmak I, Ozturk L, Yazici A M, et al. Multiple QTL-effects of wheat Gpc-B1, locus on grain protein and micronutrient concentrations. Physiologia Plantarum, 2007, 129(3): 635-643. |