[1] Loka D, Harper J, Humphreys M, et al. Impacts of abiotic stresses on the physiology and metabolism of cool-season grasses: A review. Food and Energy Security, 2019, 8(1): 152-157. [2] Zhu J. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324. [3] Wei Z G, Wang Y C. Response mechanism of drought stress in plants. Beijing: Science Press, 2015: 25-50. 魏志刚, 王玉成. 植物干旱胁迫响应机制. 北京: 科学出版社, 2015: 25-50. [4] Chinese Pharmacopoeia Commission. The pharmacopoeia of the People’s Republic of China. Beijing: China Medical Science Press, 2015: 232. 国家药典委员会. 中华人民共和国药典. 北京: 中国医药科技出版社, 2015: 232. [5] Chen S, Cheng M, Chen K, et al. Antiviral activities of Schizonepeta tenuifolia Briq. against enterovirus 71 in vitro and in vivo. Scientific Reports, 2017, 7(1): 335-338. [6] Sohn S, Cho S, Ji E S, et al. Microarray analysis of the gene expression profile of HMC-1 mast cells following Schizonepeta tenuifolia Briquet treatment. Cellular Immunology, 2012, 277(1/2): 58-65. [7] Zhang Y, Wang S P, Feng J Y. Drought events and its causes in 2017 in China. Journal of Arid Meteorology, 2018, 36(2): 331-338. 张宇, 王素萍, 冯建英. 2017年全国干旱状况及其影响与成因. 干旱气象, 2018, 36(2): 331-338. [8] Zhou Y, Zhao Y J, Huang L J, et al. Physiological responses of Schizonepeta tenuifolia Briq. seedlings to salt stress. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 166-175. 周莹, 赵永娟, 黄丽瑾, 等. 荆芥幼苗对盐胁迫的生理响应. 核农学报, 2019, 33(1): 166-175. [9] Wang X K. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2006. 王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006. [10] Liu M X, Liang G L. Research progress on leaf mass per area. Chinese Journal of Plant Ecology, 2016, 40(8): 847-860. 刘明秀, 梁国鲁. 植物比叶质量研究进展. 植物生态学报, 2016, 40(8): 847-860. [11] Zhou Y, Tang N, Huang L, et al. Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences, 2018, 19(1): 252-255. [12] González-Villagra J, Rodrigues-Salvador A, Nunes-Nesi A, et al. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiology and Biochemistry, 2018, 124: 136-145. [13] Muir C D, Hangarter R P, Moyle L C, et al. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant Cell & Environment, 2014, 37(6): 1415-1426. [14] Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 2009, 29(1): 185-212. [15] Gomes F P, Oliva M A, Mielke M S, et al. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Scientia Horticulturae, 2010, 126(3): 379-384. [16] Manivannan P, Jaleel C A, Somasundaram R, et al. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. Comptes Rendus Biologies, 2008, 331(6): 418-425. [17] Lü E E, Zhou X R, Zhou Z Y, et al. Physiological response of desert shrub Hedysarum mongolicum to drought stress. Acta Prataculturae Sinica, 2016, 25(6): 42-50. 吕娥娥, 周向睿, 周志宇, 等. 荒漠灌木蒙古岩黄芪对干旱胁迫的生理响应. 草业学报, 2016, 25(6): 42-50. [18] Chen C X, Xie X H, Wang Y P, et al. Effects of salt and drought on the physiological characteristics of Elaeagnus angustifolia L. seedlings. Acta Ecologica Sinica, 2019, 39(12): 4540-4550. 陈春晓, 谢秀华, 王宇鹏, 等. 盐分和干旱对沙枣幼苗生理特性的影响. 生态学报, 2019, 39(12): 4540-4550. [19] Wang S, Wan C, Wang Y, et al. The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environments, 2004, 56(3): 525-539. [20] Yuncai H U, Urs S. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition & Soil Science, 2010, 168(4): 541-549. [21] Zhang C M, Shi S L, Wu F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties. Scientia Agricultura Sinica, 2018, 51(5): 868-882. 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51(5): 868-882. [22] Wang N, Yuan M L, Chen H, et al. Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings. Acta Prataculturae Sinica, 2019, 28(1): 70-78. 王宁, 袁美丽, 陈浩, 等. 干旱胁迫及复水对入侵植物节节麦幼苗生长及生理特性的影响. 草业学报, 2019, 28(1): 70-78. [23] Jing D W. Response of photosynthetic characteristics and antioxidant enzyme activities in poplar seedlings to drought stress. Journal of Nuclear Agricultural Sciences, 2014, 28(3): 532-539. 井大炜. 杨树苗叶片光合特性和抗氧化酶对干旱胁迫的响应. 核农学报, 2014, 28(3): 532-539. [24] Andre C M S R, Legay S, Lefevre I, et al. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry, 2009, 70(9): 1107-1116. [25] Bettaieb I, Hamrouni-Sellami I, Bourgou S, et al. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologia Plantarum, 2011, 33(4): 1103-1111. [26] Liu S. Study on plant phenolic compound content and their response to hyperarid extreme environment. Beijing: Beijing Forest University, 2007. 刘松. 极端干旱环境下植物体内多酚类物质含量及其对逆境的响应研究. 北京: 北京林业大学, 2007. [27] Ma D Y, Sun D X, Wang C Y, et al. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 2014, 80: 60-66. [28] Yuan Y, Liu Y J, Wu C, et al. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS One, 2012, 7(10): e42946. [29] Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytologist, 2010, 186(4): 786-793. [30] Tang Y, Bao X, Zhi Y, et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Frontiers in Plant Science, 2019, 10(168): 235-240. |