[1] Varshney R K, Ribaut J M, Buckler E S, et al. Can genomics boost productivity of orphan crops? Nature Biotechnology, 2012, 30(12): 1172-1176. [2] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. [3] Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9(10): 490-498. [4] Koes R, Verweij W, Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10(5): 236-242. [5] Ingrid H, Osmany C, Rodriguez R, et al. Black shank resistant tobacco by silencing of glutathione s-transferase. Biochemical & Biophysical Research Communications, 2009, 387(2): 300-304. [6] Ying L, Yury T, Schouten R E, et al. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A review. Frontiers in Chemistry, 2018, 6: 52. [7] Aung H N, Kyeung I P, Trinh N A, et al. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. BMC Plant Biology, 2017, 17(1): 65. [8] Hong X W, Wei J F, Hong L, et al. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One, 2013, 8(11): e78484. [9] Wen X C, Han J, Leng X P, et al. Cloning and expression of UDP-glucose: Flavonoid 3-O-glucosyltransferase gene in peach flowers. Genetics & Molecular Research, 2014, 13(4): 10067-10075. [10] Tognetti V B, Van A O, Morreel K, et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. The Plant Cell, 2010, 22(8): 2660-2679. [11] Dong T, Hwang I. Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signaling & Behavior, 2014, 9(7): e28888. [12] Rehman H M, Nawaz M A, Shah Z H, et al. Comparative genomic and transcriptomic analyses of family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Scientific Reports, 2018, 8(8): 1875. [13] Lee W J, Kim J, Lee D, et al. Arabidopsis UDP-glycosyltransferase 78D1-overexpressing plants accumulate higher levels of kaempferol 3-O-β-d-glucopyranoside than wild-type plants. Applied Biological Chemistry, 2017, 60(6): 647-652. [14] Li P, Li Y J, Zhang F J, et al. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant Journal, 2017, 89(1): 85-103. [15] Cui Z H, Bi W L, Hao X Y, et al. Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leaf roll-associated virus 3-infected in vitro grapevine (Vitis vinifera) leaves. Plant Disease, 2017, 101(9): 1606-1615. [16] Li Y J, Li P, Wang T, et al. The maize secondary metabolism glycosyltransferase UFGT2 modifies flavonols and contributes to plant acclimation to abiotic stresses. Annals of botany, 2018, 122(7): 1203-1217. [17] Jung Y J, Lee H J, Choi J S, et al. Isolation and functional characterization of BrUGT gene encoding a UDP-glycosyltransferase from Chinese cabbage (Brassica rapa). Journal of Plant Biotechnology, 2012, 39(3): 212-218. [18] Wang S D, Kang X Y. Current research situation and suggestion on Nitraria tangutorum Bobr. Journal of Plant Genetic Resources, 2005, 6(2): 231-235. 王尚德, 康向阳. 唐古特白刺研究现状与建议. 植物遗传资源学报, 2005, 6(2): 231-235. [19] Yang X Y, Zhang H X, Tang X, et al. Nitraria resources in china and their utilization. World Forestry Research, 2013, 26(5): 64-68. 杨秀艳, 张华新, 唐欣, 等. 我国白刺植物资源及其开发利用. 世界林业研究, 2013, 26(5): 64-68. [20] Suo Y F, Du C, Li N N, et al. Cloning and functional analysis of RtSOD gene in the rare recretohalophyte Reaumuria trigyna. Acta Prataculturae Sinica, 2018, 27(4): 98-110. 索雅飞, 杜超, 李宁宁, 等. 珍稀泌盐植物长叶红砂RtSOD基因的克隆及功能分析. 草业学报, 2018, 27(4): 98-110. [21] Li T, Jia K P, Lian H L, et al. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome a signaling pathway under far-red light in Arabidopsis. Biochemical & Biophysical Research Communications, 2014, 454(1): 78-83. [22] Sun Z, Chen W, Chen Z, et al. A role for ethylene-insensitive 2, gene in the regulation of the ultraviolet-B response in Arabidopsis. Acta Physiologiae Plantarum, 2006, 33(3): 1025-1030. [23] Gao Z, Chang Y X, Wang Y C. Determination of flavonoids and anthocyanins in Nitraria tangutorum by high performance liquid chromatography coupled with tandem mass spectrometry. Protein & Peptide Letters, 2016, 23(5): 424-432. [24] Wang Y, Zhao L, Xie X, et al. Transcriptomic responses in Neolitsea sericea leaves under acute drought stress. Acta Physiologiae Plantarum, 2018, 40(2): 22. [25] Sun W, Meng X, Liang L, et al. Overexpression of a freesia hybrida flavonoid 3-O-glycosyltransferase gene, Fh3GT1, enhances transcription of key anthocyanin genes and accumulation of anthocyanin and flavonol in transgenic petunia(Petunia hybrida). In vitro Cellular & Developmental Biology-Plant, 2017, 53(5): 478-488. [26] Guo J, Han W, Wang M. Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: A review. African Journal of Biotechnology, 2008, 7(25): 1-4. [27] Hayat S, Hayat Q, Alyemeni M N, et al. Role of proline under changing environments. Plant Signaling & Behavior, 2012, 7(11): 1456-1466. [28] Chutipaijit S, Chaum S, Sompornpailin K. High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Australian Journal of Crop Science, 2011, 5(10): 1191-1198. [29] Sun M, Feng X X, Gao J J, et al. VvMYBA6 in the promotion of anthocyanin biosynthesis and salt tolerance in transgenic Arabidopsis. Plant Biotechnology Reports, 2017, (6): 1-16. [30] Sonia M, Oksana S, Marek Z, et al. Anthocyanins of coloured wheat genotypes in specific response to salt stress. Molecules, 2018, 23(7): 1518. [31] Aung H N, Trinh N A, Ki B L, et al. Overexpression of rosea1 from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco. Frontiers in Plant Science, 2018, 9: 1070. [32] Qiu Z B, Wang Y F, Zhu A J, et al. Exogenous sucrose can enhance tolerance of Arabidopsis thaliana seedlings to salt stress. Biologia Plantarum, 2014, 58(4): 611-617. |