[1] Moleele N M, Ringrose S, Matheson W, et al. More woody plants? The status of bush encroachment in Botswana’s grazing areas. Journal of Environmental Management, 2002, 64(1): 3-11. [2] Yu M, Ellis J E, Epstein H E. Regional analysis of climate, primary production, and livestock density in Inner Mongolia. Journal of Environmental Quality, 2004, 33(5): 1675-1681. [3] Yanoff S, Esteban M. Grassland-shrubland transformation and grazing: A century-scale view of a northern Chihuahuan Desert grassland. Journal of Arid Environments, 2008, 72(9): 1594-1605. [4] Maestre F T, Bowker M A, Puche M D, et al. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 2009, 12(9): 930-941. [5] Lunt I D, Winsemius L M, Mcdonald S P, et al. How widespread is woody plant encroachment in temperate Australia? Changes in woody vegetation cover in lowland woodland and coastal ecosystems in Victoria from 1989 to 2005. Journal of Biogeography, 2010, 37(4): 722-732. [6] Schulze E D, Harrison S P, Heimann M, et al. Global biogeochemical cycles in the climate system. San Diego: Academic Press, 2001: 115-137. [7] Eldridge D J, Bowker M A, Maestre F T, et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 2011, 14(7): 709-722. [8] Howard K, Eldridge D J, Soliveres S. Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology, 2012, 13(2): 159-168. [9] Yue X L, Hasi, Zhuang Y M, et al. Studies on sandy grassland nabkhas-A review. Journal of Desert Research, 2005, 16(4): 360-363. 岳兴玲, 哈斯, 庄严美, 等. 沙质草原灌丛沙堆研究综述. 中国沙漠, 2005, 16(4): 360-363. [10] Zhao H L, Zhao X Y, Zhang T H, et al. Desertification process and vegetation restoration mechanism of Horqin sandy land. Beijing: Ocean Press, 2004. 赵哈林, 赵学勇, 张铜会, 等. 科尔沁沙地沙漠化过程及植被恢复机理. 北京: 海洋出版社, 2004. [11] Su Y Z, Zhao H L, Zhang T H. Influencing mechanism of several shrubs and subshrubs on soil fertility in Horqin sandy land. Chinese Journal of Applied Ecology, 2002, 13(7): 802-806. [12] Stubbs M M, Pyke D A. Available nitrogen: A time-based study of manipulated resource islands. Plant and Soil, 2005, 270(1): 123-133. [13] Pei S F, Fu H, Chen Y M, et al. Influence of Zygophyllaceae xanthoxylum shrubs on soil fertility in enclosure and grazing conditions. Journal of Desert Research, 2004, 24(6): 763-767. 裴世芳, 傅华, 陈亚明, 等. 放牧和围封下霸王灌丛对土壤肥力的影响. 中国沙漠, 2004, 24(6): 763-767. [14] Tyler S W, Wheat-craft S W. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal, 1989, 53(4): 987-996. [15] Su Y Z, Zhao H L. Fractal features of soil particle size distribution in the desertification process of the farmland in Horqin sandy land. Acta Ecologica Sinica, 2004, 24(1): 71-74. 苏永中, 赵哈林. 科尔沁沙地农田沙漠化演变中土壤颗粒分形特征. 生态学报, 2004, 24(1): 71-74. [16] Jia X H, Li X R, Li Y S. Fractal characteristics of soil particles during vegetation restoration in arid sandy area. Geographical Research, 2007, 26(3): 518-525. 贾晓红, 李新荣, 李元寿. 干旱沙区植被恢复过程中土壤颗粒分形特征. 地理研究, 2007, 26(3): 518-525. [17] Zhao W Z, Liu Z M, Cheng G D. Fractal dimension of soil particle for sand desertification for sand desertification. Acta Pedologica Sinica, 2002, 39(6): 877-881. 赵文智, 刘志民, 程国栋. 土地沙质荒漠化过程的土壤分形特征. 土壤学报, 2002, 39(6): 877-881. [18] Wang H L. Study on characteristics of wind-eroded surface particles based on digital image processing. Hohhot: Inner Mongolia Agricultural University, 2013. 王淮亮. 基于数字图像处理的风蚀地表颗粒特征研究. 呼和浩特: 内蒙古农业大学, 2013. [19] Huang G H, Zhan W H. Fractal characteristics of soil particles and their applications. Acta Pedologica Sinica, 2002, 39(4): 490-497. 黄冠华, 詹卫华. 土壤颗粒的分形特征及其应用. 土壤学报, 2002, 39(4): 490-497. [20] Gao G L, Ding G D, Wu B. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crust. PLoS One, 2014, 9(2): e88559. [21] Liu Y Y, Gong Y M, Wang X, et al. Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees. Journal of Arid Land, 2013, 5(4): 480-487. [22] Zheng Z C, He S Q, Wang Y D, et al. Distribution feature of soil nutrients in aggregate under different land use. Journal of Soil and Water Conservation, 2010, 24(3): 170-174. 郑子成, 何淑勤, 王永东, 等. 不同土地利用方式下土壤团聚体中养分的分布特征. 水土保持学报, 2010, 24(3): 170-174. [23] Bao S D. Soil agrochemical analysis (Third edition). Beijing: China Agricultural Press, 2000. 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. [24] Qi Y B, Chang Q R, Hui Y H. Fractal features of soil particles in desertification reversing process by artificial vegetation. Acta Pedologica Sinica, 2007, 44(3): 566-569. 齐雁冰, 常庆瑞, 惠泱河. 人工植被恢复荒漠化逆转过程中土壤颗粒分形特征. 土壤学报, 2007, 44(3): 566-569. [25] Gao Y J. The study of soil quality evaluate and evolvement mechanism of soil desertification between agriculture and husbandry interlace zone in North of Shannxi Province. Yangling: Northwest Agriculture and Forestry University, 2003. 高亚军. 陕北农牧交错带土地荒漠化演化机制及土壤质量评价研究. 杨凌: 西北农林科技大学, 2003. [26] Zou C, Xu F L, Yan Y D. The analysis of soil mechanical composition and available nutrient under different land uses patterns in the Loess Hilly Gully region. Chinese Agricultural Science Bulletin, 2008, 24(12): 424-427. 邹诚, 徐福利, 闫亚丹. 黄土高原丘陵沟壑区不同土地利用模式对土壤机械组成和速效养分影响分析. 中国农学通报, 2008, 24(12): 424-427. [27] Langford R P. Nabkha (coppice dune) files of south central New Mexico, USA. Journal of Arid Environment, 2000, 46(7): 25-41. [28] Liu X P, Dong Z B. Wind tunnel tests of the roughness and drag partition on vegetated surfaces. Journal of Desert Research, 2002, 22(1): 82-87. 刘小平, 董治宝. 直立植被粗糙度和阻力分解的风洞试验研究. 中国沙漠, 2002, 22(1): 82-87. [29] Zhang S R, Deng L J, Zhou Q, et al. Fractal dimensions of particle surface in the plowed layers and their pelationships with soil properties. Acta Pedologica Sinica, 2002, 39(2): 221-226. 张世熔, 邓良基, 周倩, 等. 耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系. 土壤学报, 2002, 39(2): 221-226. [30] Ru H, Zhang J J, Li Y T, et al. Fractal features of soil particle size distributions and its effect on soil erosion of Loess Plateau. Transactions of the Chinese Society for Agricultural Machinery, 2015, 4(46): 176-182. 茹豪, 张建军, 李玉婷, 等. 黄土高原土壤粒径分形特征及其对土壤侵蚀的影响. 农业机械学报, 2015, 4(46): 176-182. [31] Wang D, Fu B J, Chen L D, et al. Fractal analysis on soil particle size distributions under different land-use types: A case study in the loess hilly areas of the Loess Plateau, China. Acta Ecologica Sinica, 2007, 27(7): 3082-3089. 王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析——以黄土丘陵沟壑区为例. 生态学报, 2007, 27(7): 3082-3089. [32] Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 1996, 77(2): 364-374. [33] Liu J F, Hong W, Wu C Z. Fractal features of soil clusters under some precious hardwood stands in the central subtropical region, China. Acta Ecologica Sinica, 2002, 22(2): 197-205. 刘金福, 洪伟, 吴承祯. 中亚热带几种珍贵树种林分土壤团粒结构的分维特征. 生态学报, 2002, 22(2): 197-205. [34] Jia X H, Li X R, Zhang J G, et al. Spatial heterogeneity analysis of fractal dimension of soil particle for Ammopiptanhus mongolicus shrub. Acta Ecologica Sinica, 2006, 26(9): 2827-2833. 贾晓红, 李新荣, 张景光, 等. 沙冬青灌丛地的土壤颗粒大小D空间变异性分析. 生态学报, 2006, 26(9): 2827-2833. |