Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (3): 200-207.DOI: 10.11686/cyxb2020146
Previous Articles Next Articles
Shuai-nan LIU1(), Guang LI1(), Jiang-qi WU1, Wei-wei MA1, Chuan-jie YANG1, Shi-kang ZHANG2, Yao YAO3, Yan-hua LU1, Xing-xing WEI1, Juan ZHANG1
Received:
2020-03-30
Revised:
2020-05-18
Online:
2021-03-20
Published:
2021-03-09
Contact:
Guang LI
Shuai-nan LIU, Guang LI, Jiang-qi WU, Wei-wei MA, Chuan-jie YANG, Shi-kang ZHANG, Yao YAO, Yan-hua LU, Xing-xing WEI, Juan ZHANG. Characteristics of soil nutrients under different land types in the loess hill region based on ecological chemometrics[J]. Acta Prataculturae Sinica, 2021, 30(3): 200-207.
指标 Index | 小麦地Wheat field | 云杉林地Spruce woodland | 苜蓿地Alfalfa field | ||||||
---|---|---|---|---|---|---|---|---|---|
标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | |
SOC | 5.96 | 12.00AB | 49.68 | 5.32 | 14.19A | 37.46 | 4.18 | 10.39B | 40.25 |
TN | 0.14 | 0.32AB | 44.60 | 0.14 | 0.37A | 36.73 | 0.14 | 0.30B | 47.61 |
TP | 0.19 | 0.41B | 45.37 | 0.16 | 0.52A | 31.35 | 0.21 | 0.51A | 41.70 |
C/N | 25.16 | 40.72AB | 61.81 | 21.76 | 42.23A | 51.53 | 16.89 | 35.90B | 47.05 |
C/P | 38.13 | 40.85A | 93.34 | 15.83 | 30.04AB | 52.70 | 13.69 | 23.71B | 57.76 |
N/P | 0.83 | 1.05A | 78.78 | 0.24 | 0.75B | 32.17 | 0.45 | 0.67B | 66.99 |
Table 1 The content of C, N, P and stoichiometric characteristics of 0-100 cm soil in different land types
指标 Index | 小麦地Wheat field | 云杉林地Spruce woodland | 苜蓿地Alfalfa field | ||||||
---|---|---|---|---|---|---|---|---|---|
标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | 标准差SD | 均值Mean (g·kg-1) | CV (%) | |
SOC | 5.96 | 12.00AB | 49.68 | 5.32 | 14.19A | 37.46 | 4.18 | 10.39B | 40.25 |
TN | 0.14 | 0.32AB | 44.60 | 0.14 | 0.37A | 36.73 | 0.14 | 0.30B | 47.61 |
TP | 0.19 | 0.41B | 45.37 | 0.16 | 0.52A | 31.35 | 0.21 | 0.51A | 41.70 |
C/N | 25.16 | 40.72AB | 61.81 | 21.76 | 42.23A | 51.53 | 16.89 | 35.90B | 47.05 |
C/P | 38.13 | 40.85A | 93.34 | 15.83 | 30.04AB | 52.70 | 13.69 | 23.71B | 57.76 |
N/P | 0.83 | 1.05A | 78.78 | 0.24 | 0.75B | 32.17 | 0.45 | 0.67B | 66.99 |
土地类型Land types | 土层Soil depth (cm) | C/N | C/P | N/P |
---|---|---|---|---|
小麦地Wheat field | 0~10 | 34.32±7.18Aa | 26.48±8.73Aa | 0.85±0.27Aa |
10~20 | 45.62±12.2Aa | 34.17±7.64Aa | 0.89±0.24Aa | |
20~40 | 37.53±16.74Aa | 49.32±28.77Aa | 1.27±0.55Aa | |
40~60 | 48.02±13.40Aa | 43.88±17.31Aa | 1.03±0.32Aa | |
60~80 | 48.14±8.62Aa | 52.53±14.99Aa | 1.31±0.43Aa | |
80~100 | 29.35±12.24Aa | 40.95±21.23Aa | 0.96±0.28Aa | |
云杉林地Spruce woodland | 0~10 | 38.94±7.42Aa | 24.00±3.18Aa | 0.66±0.07Aa |
10~20 | 35.88±8.96Aa | 22.78±6.18Aa | 0.80±0.03Aa | |
20~40 | 38.12±8.70Aa | 25.18±4.49Aa | 0.76±0.13Aa | |
40~60 | 28.31±9.01Aa | 30.63±6.89Aa | 0.85±0.19Aa | |
60~80 | 54.10±11.06Aa | 34.66±6.34Aa | 0.73±0.09Aa | |
80~100 | 53.26±10.58Aa | 42.17±11.82Aa | 0.75±0.07Aa | |
苜蓿地Alfalfa field | 0~10 | 27.03±3.76Aa | 17.22±3.15Aa | 0.65±0.11Aa |
10~20 | 34.91±5.64Aa | 20.86±3.09Aa | 0.61±0.05Aa | |
20~40 | 41.31±7.52Aa | 24.25±5.38Aa | 0.63±0.29Aa | |
40~60 | 35.89±9.29Aa | 30.84±8.92Aa | 0.92±0.30Aa | |
60~80 | 32.04±5.49Aa | 21.29±4.18Aa | 0.66±0.02Aa | |
80~100 | 46.20±13.82Aa | 27.88±9.01Aa | 0.43±0.21Aa |
Table 2 Stoichiometric ratio of soil nutrients in different soil layers of different land types
土地类型Land types | 土层Soil depth (cm) | C/N | C/P | N/P |
---|---|---|---|---|
小麦地Wheat field | 0~10 | 34.32±7.18Aa | 26.48±8.73Aa | 0.85±0.27Aa |
10~20 | 45.62±12.2Aa | 34.17±7.64Aa | 0.89±0.24Aa | |
20~40 | 37.53±16.74Aa | 49.32±28.77Aa | 1.27±0.55Aa | |
40~60 | 48.02±13.40Aa | 43.88±17.31Aa | 1.03±0.32Aa | |
60~80 | 48.14±8.62Aa | 52.53±14.99Aa | 1.31±0.43Aa | |
80~100 | 29.35±12.24Aa | 40.95±21.23Aa | 0.96±0.28Aa | |
云杉林地Spruce woodland | 0~10 | 38.94±7.42Aa | 24.00±3.18Aa | 0.66±0.07Aa |
10~20 | 35.88±8.96Aa | 22.78±6.18Aa | 0.80±0.03Aa | |
20~40 | 38.12±8.70Aa | 25.18±4.49Aa | 0.76±0.13Aa | |
40~60 | 28.31±9.01Aa | 30.63±6.89Aa | 0.85±0.19Aa | |
60~80 | 54.10±11.06Aa | 34.66±6.34Aa | 0.73±0.09Aa | |
80~100 | 53.26±10.58Aa | 42.17±11.82Aa | 0.75±0.07Aa | |
苜蓿地Alfalfa field | 0~10 | 27.03±3.76Aa | 17.22±3.15Aa | 0.65±0.11Aa |
10~20 | 34.91±5.64Aa | 20.86±3.09Aa | 0.61±0.05Aa | |
20~40 | 41.31±7.52Aa | 24.25±5.38Aa | 0.63±0.29Aa | |
40~60 | 35.89±9.29Aa | 30.84±8.92Aa | 0.92±0.30Aa | |
60~80 | 32.04±5.49Aa | 21.29±4.18Aa | 0.66±0.02Aa | |
80~100 | 46.20±13.82Aa | 27.88±9.01Aa | 0.43±0.21Aa |
项目Items | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|
SOC | 0.766** | 0.552* | 0.161 | -0.051 | 0.094 |
TN | 0.883** | -0.334 | -0.412 | -0.022 | |
TP | -0.433 | -0.733** | -0.397 | ||
C/N | 0.493* | 0.082 | |||
C/P | 0.813** |
Table 3 Correlations between C, N, P content and stoichiometric ratio of different land types
项目Items | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|
SOC | 0.766** | 0.552* | 0.161 | -0.051 | 0.094 |
TN | 0.883** | -0.334 | -0.412 | -0.022 | |
TP | -0.433 | -0.733** | -0.397 | ||
C/N | 0.493* | 0.082 | |||
C/P | 0.813** |
1 | Reich P B, Tjoelker M G, Machado J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 2006, 439(7075): 457-461. |
2 | Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. |
3 | Peng X Y, Jia Y N, Jiang Y J, et al. Soil ecological chemometrics characteristics of different land types in Karst valley area of Zhongliang mountain. Chinese Agricultural Science Bulletin, 2019, 35(5): 84-92. |
彭学义, 贾亚男, 蒋勇军, 等. 中梁山岩溶槽谷区不同土地类型土壤生态化学计量学特征. 中国农学通报, 2019, 35(5): 84-92. | |
4 | Zhou Z H, Wang C K, Zhang Q Z. The effect of land use change on soil carbon, nitrogen, and phosphorus contents and their stoichiometry in temperate sapling stands in Northeastern China. Acta Ecologica Sinica, 2015, 35(20): 6694-6702. |
周正虎, 王传宽, 张全智. 土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响. 生态学报, 2015, 35(20): 6694-6702. | |
5 | Zhang Y, Liang A H, Wang P P, et al. Soil nutrient effects of different vegetation restoration models in loess hilly area. Journal of Northwest Agriculture, 2010, 19(9): 114-118. |
张杨, 梁爱华, 王平平, 等. 黄土丘陵区不同植被恢复模式土壤养分效应. 西北农业学报, 2010, 19(9): 114-118. | |
6 | Torgny N, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen. Nature, 1998, 392(6679): 914-916. |
7 | Liu X F, Liu S F, Jiang L, et al. Stoichiometric characteristics of soil C, N and P in different vegetation types in the rocky desertification area of Northwestern Hunan Province. Journal of Central South University of Forestry & Technology, 2019, 39(2): 72-78. |
刘兴锋, 刘思凡, 蒋龙, 等. 湘西北石漠化区不同植被类型土壤C、N、P的化学计量特征. 中南林业科技大学学报, 2019, 39(2): 72-78. | |
8 | Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008(8): 3937-3947. |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008(8): 3937-3947. | |
9 | Qiu L P, Zhang X C. Effects of land use on soil properties in Ziwuling region. Journal of Natural Resources, 2006(6): 965-972. |
邱莉萍, 张兴昌. 子午岭不同土地利用方式对土壤性质的影响. 自然资源学报, 2006(6): 965-972. | |
10 | Bai Y R, Zhang X, Bao W B, et al. The soil carbon, nitrogen, and phosphorus contents and their stoichiometry under different land uses in loess hilly region. Agricultural Research in the Arid Areas, 2019, 37(4): 117-123, 131. |
白一茹, 张兴, 包维斌, 等. 黄土丘陵区不同土地利用方式土壤碳氮磷及其生态化学计量特征. 干旱地区农业研究, 2019, 37(4): 117-123, 131. | |
11 | Chen X W, Li B L. Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management, 2003, 186(1): 197-206. |
12 | Ma K, Ma B, He X P, et al. Research of the distribution of soil nutrient in different land patterns on the loess plateau of South Ningxia. Journal of Agricultural Sciences, 2006(2): 1-5, 14. |
马琨, 马斌, 何宪平, 等. 宁夏南部山区不同土地类型土壤养分的分布特征研究. 农业科学研究, 2006(2): 1-5, 14. | |
13 | Sun Q, Wang B, Zhou H P, et al. Spatial variation of ecological stoichiometry of soil C,N and P in a small catchment of loess hilly area. Chinese Journal of Ecology, 2020, 39(3): 766-774. |
孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性. 生态学杂志, 2020, 39(3): 766-774. | |
14 | Zhao F Z. Chemometric characteristics of C, N, P and response mechanism of soil organic carbon pool and components of returned vegetation in loess hilly area. Xianyang: Northwest A & F University, 2015. |
赵发珠. 黄土丘陵区退耕植被土壤C、N、P化学计量学特征与土壤有机碳库及组分的响应机制. 咸阳: 西北农林科技大学, 2015. | |
15 | Zhu Q L. The influence of site conditions of different vegetation zones on the characteristics of plant litter soil eco-stoichiometry. Xianyang: Northwest A & F University, 2013. |
朱秋莲. 黄土丘陵区不同植被带立地条件对植物—枯落物—土壤生态化学计量特征的影响. 咸阳: 西北农林科技大学, 2013. | |
16 | Su B W. Scale effect of spatial variability of soil nutrients and its response to winter wheat growth. Tai’an: Shandong Agricultural University, 2019. |
宿宝巍. 农田土壤养分空间变异尺度效应及其冬小麦生育响应. 泰安: 山东农业大学, 2019. | |
17 | Wang Z G, Zhang C, Sun B P, et al. Overview of national soil and water conservation zoning. Soil and Water Conservation in China, 2015(12): 12-17. |
王治国, 张超, 孙保平, 等. 全国水土保持区划概述. 中国水土保持, 2015(12): 12-17. | |
18 | Lu R K. Soil agrochemical analysis method. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
19 | Wei X R, Shao M A. Distribution characteristics of soil nutrients in small watershed of Loess Plateau. Acta Ecologica Sinica, 2007(2): 603-612. |
魏孝荣, 邵明安. 黄土高原沟壑区小流域坡地土壤养分分布特征. 生态学报, 2007(2): 603-612. | |
20 | Rutigliano F A, Ascoli R D. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology and Biochemistry, 2004, 36(11): 1719-1729. |
21 | Qi L H, Zhang X D, Zhou J X, et al. Soil microbial quantity, biomass carbon and nitrogen and their fractal characteristics in different vegetation restoration areas of small watershed in Northwest Hunan. Scientia Silvae Sinicae, 2009, 45(8): 14-20. |
漆良华, 张旭东, 周金星, 等. 湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征. 林业科学, 2009, 45(8): 14-20. | |
22 | Jobbagy E E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436. |
23 | Zhang S, Xu M X, Zhang Y F, et al. Impact of land use change on deep soil organic carbon storage in loess hilly area. Acta Scientiae Circumstantiae, 2014, 34(12): 3094-3101. |
张帅, 许明祥, 张亚锋, 等. 黄土丘陵区土地利用变化对深层土壤有机碳储量的影响. 环境科学学报, 2014, 34(12): 3094-3101. | |
24 | Lv W Q, Tang J G, Luo S Q, et al. 4 study on the effect of vegetation restoration mode on the organic carbon and nitrogen of surface soil in rocky desertification area of Guizhou Province. Forest Resources Management, 2016(5): 47-52, 70. |
吕文强, 唐金刚, 罗时琴, 等. 4种植被恢复模式对贵州石漠化地区表层土壤有机碳氮的影响研究. 林业资源管理, 2016(5): 47-52, 70. | |
25 | Pan J, Song N P, Wu X D, et al. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus in artificial Caragana forest with different planting years in desert grassland. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 160-168. |
潘军, 宋乃平, 吴旭东, 等. 荒漠草原不同种植年限人工柠条林土壤碳氮磷化学计量特征. 浙江大学学报(农业与生命科学版), 2015, 41(2): 160-168. | |
26 | Rong Y P, Han J G, Wang P, et al. Effect of grazing intensity on physical and chemical properties of grassland soil. Chinese Journal of Grassland, 2001(4): 42-48. |
戎郁萍, 韩建国, 王培, 等. 放牧强度对草地土壤理化性质的影响. 中国草地, 2001(4): 42-48. | |
27 | Zhou Y B, Guo X W, Wei Y W, et al. Vertical distribution characteristics of C, N, P in typical plantation soils in the semi-arid area of Northwest Liaoning. Journal of Shenyang Agricultural University, 2016, 47(4): 418-424. |
周永斌, 郭鑫炜, 魏亚伟, 等. 辽西北半干旱区典型人工林土壤C,N,P的垂直分布特征. 沈阳农业大学学报, 2016, 47(4): 418-424. | |
28 | Qin J, Kong H Y, Liu H. Stoichiometric characteristics of C, N, P, K in different forest soils of Pinus massoniana. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(2): 68-76, 82. |
秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征. 西北农林科技大学学报(自然科学版), 2016, 44(2): 68-76, 82. | |
29 | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/2/3): 139-151. |
30 | Du M Y, Feng H Y, Zhang L J, et al. Soil carbon and nitrogen characteristics of different vegetation restoration types in rocky mountain areas of North China. Chinese Journal of Ecology, 2018, 37(6): 1849-1855. |
杜满义, 封焕英, 张连金, 等. 华北石质山区不同植被恢复类型土壤碳、氮特征. 生态学杂志, 2018, 37(6): 1849-1855. | |
31 | Li L, Wang G J, Zhou G X, et al. Temporal and spatial characteristics of soil C∶N∶P ecological stoichiometry under Phoebe zhennan plantation of Huitong. Journal of Central South University of Forestry & Technology, 2016, 36(2): 96-100, 109. |
李栎, 王光军, 周国新, 等. 会同桢楠人工幼林土壤C∶N∶P生态化学计量的时空特征. 中南林业科技大学学报, 2016, 36(2): 96-100, 109. | |
32 | National Soil Census Office. China soil. Beijing: China Agriculture Press, 1998. |
全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. | |
33 | Gan H Y, Zhang S Z, Liang K, et al. Distribution and pollution assessment of nutrient elements in water and surface sediments of Beibu Gulf coastal wetland. Wetland Science, 2012, 10(3): 285-298. |
甘华阳, 张顺之, 梁开, 等. 北部湾北部滨海湿地水体和表层沉积物中营养元素分布与污染评价. 湿地科学, 2012, 10(3): 285-298. |
[1] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
[2] | LIU Jing, XIE Wan-yu, ZHANG Qiao-ming, XU Shao-jun. Leaf decomposition and nutrient release characteristics of different plant species in the Loess Hilly region [J]. Acta Prataculturae Sinica, 2018, 27(9): 25-33. |
[3] | FANG Zhao, ZHANG Shao-kang, LIU Hai-wei, JIAO Feng, ZHANG Jun. Distribution of herbaceous community biomass and its relationship with influencing factors in the Loess Hilly Region [J]. Acta Prataculturae Sinica, 2018, 27(2): 26-35. |
[4] | HUANG Ze, TIAN Fu-Ping, LIU Yu, ZHANG Jing-Ge, MIAO Hai-Tao, WU Gao-Lin. Effects of different grassland types on particle size distribution and stability of water stable aggregate on the Loess Plateau [J]. Acta Prataculturae Sinica, 2017, 26(11): 216-221. |
[5] | QIAO Yu-Xin, ZHU Hua-Zhong, SHAO Xiao-Ming, ZHONG Hua-Ping, ZHOU Li-Lei, WU Zhao-Wen. Automatic classification of grassland type in Xinjiang Ili based on spatial interpolation of remote sensing and other data [J]. Acta Prataculturae Sinica, 2017, 26(10): 30-45. |
[6] | LU Guang-Xin, LI Zong-Ren, LI Xi-Lai, WANG Jun-Bang, WU Chu, LI Xin, ZHANG Geng-Xiong, SUN Qian, LI Feng-Ke, ZHENG Hui-Mei. Community structure characteristics of culturable cellulose-decomposing fungi in soils from different ecosystems in the Sanjiangyuan Regions [J]. Acta Prataculturae Sinica, 2016, 25(1): 76-87. |
[7] | YANG Yang, HAN Guo-dong, LI Yuan-heng, CHEN Zhi-fang, WANG Cheng-jie. Response of soil respiration to grazing intensity, water contents, and temperature of soil in different grasslands of Inner Mongolia [J]. Acta Prataculturae Sinica, 2012, 21(6): 8-14. |
[8] | SUO Nan-ji, TAN Yan-rong, ZHU Wei-xin, GU Zhen-kuan, DU Guo-zhen. A study on soil enzyme activity in four different grasslands of the eastern Tibetan Plateau [J]. Acta Prataculturae Sinica, 2012, 21(4): 10-15. |
[9] | LI Guang, HUANG Gao-bao, WANG Qi, LUO Zhu-zhu. Analysis of cooperation effect of water and fertilizer on wheat and pea in dryland based on APSIM model [J]. Acta Prataculturae Sinica, 2011, 20(5): 151-159. |
[10] | SUI Yuan-yuan, DU Feng, ZHANG Xing-chang. Spatial heterogeneity of available soil nutrients in abandoned ole-field communities in the Loess Hilly Region [J]. Acta Prataculturae Sinica, 2011, 20(2): 76-84. |
[11] | WENDU Ri-le, LI Gang, ZHANG Jing-ni, LAI Xin, YI Jin, FAN Guo-yan, YANG Dian-lin. The study of soil microbial biomass and soil enzyme avtivity on different grassland in Hulunbeier, Inner Mongolia [J]. Acta Prataculturae Sinica, 2010, 19(5): 94-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||