Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (4): 80-89.DOI: 10.11686/cyxb2020350

Previous Articles     Next Articles

Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in the source region of the Yellow River

Qiao-yu LUO1,2(), Yan-long WANG1, Lei DU2, Nian LIU2, Li LI2, Yu-shou MA1()   

  1. 1.College of Agriculture and Animal Husbandry,Qinghai University,Xining 810008,China
    2.Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau,School of Life Sciences,Qinghai Normal University,Xining 810008,China
  • Received:2020-05-20 Revised:2020-10-10 Online:2021-04-20 Published:2021-03-16
  • Contact: Yu-shou MA

Abstract:

Theoretically speaking, the ecological characteristics of plant communities are the result of long-term adaptation and co-evolution of plants, climate, soil, terrain and other ecological environment complexes. This research studied plant community diversity characteristics and environmental factors influencing plant community composition in the adaptive region of Deschampsia caespitosa in the source region of the Yellow River. Five plant community types commonly found in Maqin county were studied: I, D. caespitosa (Poaceae) dominant; Ⅱ, Blysmus sinocompressus (Cyperaceae) dominant; Ⅲ, B. sinocompressus and D. caespitosa mixed community; Ⅳ, Kobresia schoenoides (Cyperaceae) dominant; V, K. schoenoides and D. Caespitosa mixed community. Plant species present were surveyed in mid-August 2018, and soil samples collected at the same time to establish key parameters of the plant environment. Correlation analysis and redundancy analysis (RDA) were used to analyze the association between plant species and environment factors and various ecological diversity indexes were calculated. Across the study sites 83 species were recorded belonging to 17 families and 49 genera. Notably, the widely distributed species were members of the Asteraceae, Poaceae, Cyperaceae, Ranunculaceae, Gentianaceae and Scrophulariaceae families. The community species diversity indexes varied greatly between the communities. For community I, the species richness and Shannon-Weiner indexes were lower, and the Alatalo and Pielou Jsw evenness indexes, together with the % cover, height, biomass and importance value of D. caespitosa were significantly higher than in the other communities. There were also significant differences in soil nitrogen (N), phosphorus (P), carbon (C), organic matter (SOM), soil water content (W) and pH between the different plant communities across the 5 study sites in the adaptive region of D. caespitosa. The multivariate analysis of community species diversity indexes, population characteristics and environmental factors showed that the % cover, height, biomass and importance value of D. caespitosa were negatively associated with species richness, Simpson dominance index, Shannon-Wiener index, soil P, soil moisture water, and positively associated with the Alatalo evenness index and soil pH. RDA analysis showed that pH was the main environmental factors affecting community species diversity. D. caespitosa was more suited to a moist to mesophytic soil environment with low P, while the importance value of D. caespitosa decreased significantly with increasing species richness in the community, indicating that D. caespitosa has some characteristics of a pioneer species characteristics and a potential use in restoration and management of degraded grassland.

Key words: plant communities, Deschampsia caespitosa, species diversity, soil properties