Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 127-137.DOI: 10.11686/cyxb2022205
Ting YE1,3(), Xiao-juan WU2,3, Yi-xiao LU2,3, Sheng-juan LIU1,3, Zhuo-hui JIANG1,3, Hui-min YANG1,2,3()
Received:
2022-05-06
Revised:
2022-08-18
Online:
2023-05-20
Published:
2023-03-20
Contact:
Hui-min YANG
Ting YE, Xiao-juan WU, Yi-xiao LU, Sheng-juan LIU, Zhuo-hui JIANG, Hui-min YANG. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures[J]. Acta Prataculturae Sinica, 2023, 32(5): 127-137.
土层 Soil layer (cm) | 全磷 Total phosphorus (mg·g-1) | 速效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (mg·g-1) | 速效钾 Available potassium (mg·kg-1) | 全氮 Total nitrogen (mg·g-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | 0.6 | 19.2 | 4.6 | 272.5 | 1.0 | 2.6 | 23.3 |
10~20 | 0.5 | 20.2 | 5.7 | 101.6 | 0.9 | 3.0 | 21.1 |
20~30 | 0.6 | 12.7 | 5.5 | 84.5 | 0.7 | 2.6 | 17.3 |
30~60 | 0.3 | 5.5 | 7.3 | 124.3 | 0.7 | 2.3 | 18.7 |
60~90 | 0.3 | 1.9 | 7.6 | 94.5 | 0.7 | 3.0 | 21.9 |
Table 1 Basic nutritional status of soil at the experimental site
土层 Soil layer (cm) | 全磷 Total phosphorus (mg·g-1) | 速效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (mg·g-1) | 速效钾 Available potassium (mg·kg-1) | 全氮 Total nitrogen (mg·g-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | 0.6 | 19.2 | 4.6 | 272.5 | 1.0 | 2.6 | 23.3 |
10~20 | 0.5 | 20.2 | 5.7 | 101.6 | 0.9 | 3.0 | 21.1 |
20~30 | 0.6 | 12.7 | 5.5 | 84.5 | 0.7 | 2.6 | 17.3 |
30~60 | 0.3 | 5.5 | 7.3 | 124.3 | 0.7 | 2.3 | 18.7 |
60~90 | 0.3 | 1.9 | 7.6 | 94.5 | 0.7 | 3.0 | 21.9 |
种植模式Planting pattern | 牧草组合及比例Forage combination and mixing ratio | 播量Sowing rate (kg·hm-2) | 处理编号Code |
---|---|---|---|
混播Mixture | 苜蓿∶猫尾草7∶3 Alfalfa∶timothy 7∶3 | 10.5,4.5 | M7P3 |
苜蓿∶猫尾草5∶5 Alfalfa∶timothy 5∶5 | 7.5,7.5 | M5P5 | |
苜蓿∶猫尾草3∶7 Alfalfa∶timothy 3∶7 | 4.5,10.5 | M3P7 | |
苜蓿∶无芒雀麦7∶3 Alfalfa∶smooth bromegrass 7∶3 | 10.5,9.0 | M7B3 | |
苜蓿∶无芒雀麦5∶5 Alfalfa∶smooth bromegrass 5∶5 | 7.5,15.0 | M5B5 | |
苜蓿∶无芒雀麦3∶7 Alfalfa∶smooth bromegrass 3∶7 | 4.5,21.0 | M3B7 | |
单播Monoculture | 100%苜蓿Pure alfalfa | 15.0 | M |
100%猫尾草Pure timothy | 15.0 | P | |
100%无芒雀麦Pure smooth bromegrass | 30.0 | B |
Table 2 Planting pattern, combination and mixing ratio
种植模式Planting pattern | 牧草组合及比例Forage combination and mixing ratio | 播量Sowing rate (kg·hm-2) | 处理编号Code |
---|---|---|---|
混播Mixture | 苜蓿∶猫尾草7∶3 Alfalfa∶timothy 7∶3 | 10.5,4.5 | M7P3 |
苜蓿∶猫尾草5∶5 Alfalfa∶timothy 5∶5 | 7.5,7.5 | M5P5 | |
苜蓿∶猫尾草3∶7 Alfalfa∶timothy 3∶7 | 4.5,10.5 | M3P7 | |
苜蓿∶无芒雀麦7∶3 Alfalfa∶smooth bromegrass 7∶3 | 10.5,9.0 | M7B3 | |
苜蓿∶无芒雀麦5∶5 Alfalfa∶smooth bromegrass 5∶5 | 7.5,15.0 | M5B5 | |
苜蓿∶无芒雀麦3∶7 Alfalfa∶smooth bromegrass 3∶7 | 4.5,21.0 | M3B7 | |
单播Monoculture | 100%苜蓿Pure alfalfa | 15.0 | M |
100%猫尾草Pure timothy | 15.0 | P | |
100%无芒雀麦Pure smooth bromegrass | 30.0 | B |
因素 Effector | 苜蓿产量Alfalfa yield | 禾草产量Grass yield | 总产量Total yield | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
年龄Age | 128.802 | <0.001 | 205.109 | <0.001 | 395.374 | <0.001 |
混播组合Combination | 2.528 | 0.116 | 34.782 | <0.001 | 20.373 | <0.001 |
混播比例Mixing ratio | 226.270 | <0.001 | 221.625 | <0.001 | 149.782 | <0.001 |
年龄×混播组合Age×combination | 9.419 | <0.001 | 104.355 | <0.001 | 14.403 | <0.001 |
年龄×混播比例Age×mixing ratio | 36.332 | <0.001 | 21.239 | <0.001 | 36.686 | <0.001 |
混播组合×混播比例Combination×mixing ratio | 1.588 | 0.186 | 13.213 | <0.001 | 2.264 | 0.070 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.821 | <0.001 | 45.838 | <0.001 | 2.372 | 0.011 |
Table 3 Effects of age, combination, mixing ratio and the interactions on forage yield
因素 Effector | 苜蓿产量Alfalfa yield | 禾草产量Grass yield | 总产量Total yield | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
年龄Age | 128.802 | <0.001 | 205.109 | <0.001 | 395.374 | <0.001 |
混播组合Combination | 2.528 | 0.116 | 34.782 | <0.001 | 20.373 | <0.001 |
混播比例Mixing ratio | 226.270 | <0.001 | 221.625 | <0.001 | 149.782 | <0.001 |
年龄×混播组合Age×combination | 9.419 | <0.001 | 104.355 | <0.001 | 14.403 | <0.001 |
年龄×混播比例Age×mixing ratio | 36.332 | <0.001 | 21.239 | <0.001 | 36.686 | <0.001 |
混播组合×混播比例Combination×mixing ratio | 1.588 | 0.186 | 13.213 | <0.001 | 2.264 | 0.070 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.821 | <0.001 | 45.838 | <0.001 | 2.372 | 0.011 |
因素Effector | F | P |
---|---|---|
年龄Age | 28.382 | <0.001 |
混播组合Combination | 1.055 | 0.116 |
混播比例Mixing ratio | 0.257 | 0.775 |
年龄×混播组合Age×combination | 22.079 | 0.001 |
年龄×混播比例Age×mixing ratio | 2.117 | 0.068 |
混播组合×混播比例Combination×mixing ratio | 0.424 | 0.657 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.651 | 0.001 |
Table 4 Effects of age, combination, mixing ratio and the interactions on relative yield total
因素Effector | F | P |
---|---|---|
年龄Age | 28.382 | <0.001 |
混播组合Combination | 1.055 | 0.116 |
混播比例Mixing ratio | 0.257 | 0.775 |
年龄×混播组合Age×combination | 22.079 | 0.001 |
年龄×混播比例Age×mixing ratio | 2.117 | 0.068 |
混播组合×混播比例Combination×mixing ratio | 0.424 | 0.657 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 5.651 | 0.001 |
因素 Effector | 相对产量相异度系数CD-RY | 相对种群密度相异度系数CD-RPD | ||||||
---|---|---|---|---|---|---|---|---|
苜蓿Alfalfa | 禾草Grass | 苜蓿Alfalfa | 禾草Grass | |||||
F | P | F | P | F | P | F | P | |
年龄Age | 11.650 | <0.001 | 7.395 | 0.002 | 17.919 | <0.001 | 44.296 | <0.001 |
混播组合Combination | 37.023 | <0.001 | 31.748 | <0.001 | 5.199 | 0.029 | 1.915 | 0.175 |
混播比例Mixing ratio | 29.553 | <0.001 | 4.865 | 0.003 | 1.591 | 0.218 | 9.010 | 0.001 |
年龄×混播组合Age×combination | 5.049 | 0.009 | 15.047 | <0.001 | 4.368 | 0.020 | 0.468 | 0.630 |
年龄×混播比例Age×mixing ratio | 9.787 | <0.001 | 0.552 | 0.699 | 1.125 | 0.360 | 5.670 | 0.001 |
混播组合×混播比例Combination×mixing ratio | 19.152 | <0.001 | 5.746 | 0.007 | 4.900 | 0.013 | 10.728 | <0.001 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 9.553 | <0.001 | 4.227 | 0.006 | 1.153 | 0.384 | 4.897 | 0.003 |
Table 5 Effects of age, combination, mixing ratio and the interactions on forage dissimilarity coefficient (CD)
因素 Effector | 相对产量相异度系数CD-RY | 相对种群密度相异度系数CD-RPD | ||||||
---|---|---|---|---|---|---|---|---|
苜蓿Alfalfa | 禾草Grass | 苜蓿Alfalfa | 禾草Grass | |||||
F | P | F | P | F | P | F | P | |
年龄Age | 11.650 | <0.001 | 7.395 | 0.002 | 17.919 | <0.001 | 44.296 | <0.001 |
混播组合Combination | 37.023 | <0.001 | 31.748 | <0.001 | 5.199 | 0.029 | 1.915 | 0.175 |
混播比例Mixing ratio | 29.553 | <0.001 | 4.865 | 0.003 | 1.591 | 0.218 | 9.010 | 0.001 |
年龄×混播组合Age×combination | 5.049 | 0.009 | 15.047 | <0.001 | 4.368 | 0.020 | 0.468 | 0.630 |
年龄×混播比例Age×mixing ratio | 9.787 | <0.001 | 0.552 | 0.699 | 1.125 | 0.360 | 5.670 | 0.001 |
混播组合×混播比例Combination×mixing ratio | 19.152 | <0.001 | 5.746 | 0.007 | 4.900 | 0.013 | 10.728 | <0.001 |
年龄×混播组合×混播比例Age×combination×mixing ratio | 9.553 | <0.001 | 4.227 | 0.006 | 1.153 | 0.384 | 4.897 | 0.003 |
1 | Ren J Z, Zhang Y J. Grassland resources in the south of China and its development strategy. Journal of China Institute of Metrology, 2002, 13(3): 11-17. |
任继周, 张英俊. 中国南方草地资源及其发展战略. 中国计量学院学报, 2002, 13(3): 11-17. | |
2 | Rolando J L, Dubeux J C B, Ramirez D A, et al. Land use effects on soil fertility and nutrient cycling in the Peruvian High-Andean Puna grasslands. Soil Science Society of America Journal, 2018, 82(2): 463-474. |
3 | Hadidi M, Ibarz A, Pagan J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chemistry, 2020, 309: 125786. |
4 | Chen L, He F, Long R C, et al. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. Journal of Integrative Plant Biology, 2021, 63(11): 1937-1951. |
5 | Liu M G, Wang Z K, Mu L, et al. Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China. Agricultural Water Management, 2021, 248: 106764. |
6 | Ali G, Wang Z K, Li X R, et al. Deep soil water deficit and recovery in alfalfa fields of the Loess Plateau of China. Field Crops Research, 2021, 260: 107990. |
7 | Wang J, Liu W Z, Zhong L P, et al. Spatial variability of soil moisture and aboveground biomass of Medicago sativa under long term continuous planting. Acta Prataculturae Sinica, 2009, 18(4): 41-46. |
王俊, 刘文兆, 钟良平, 等. 长期连续种植苜蓿草地地上部分生物量与土壤水分的空间差异性. 草业学报, 2009, 18(4): 41-46. | |
8 | Lin H L, Dong S K. Effective analysis of interspecific in mixed grassland of cultivated perennial grasses in alpine region of Qinghai-Tibetan plateau of China. Acta Prataculturae Sinica, 2003, 12(3): 79-82. |
林慧龙, 董世魁. 高寒地区多年生禾草混播草地种间竞争效应分析. 草业学报, 2003, 12(3): 79-82. | |
9 | Zhao J Q. The sustainable utilization study of 18 introduced excellent cultivars mixture pastures productivity and community stability. Lanzhou: Lanzhou University, 2007. |
赵俊权. 18种引进优良牧草混播草地生产力和群落稳定性及可持续利用研究. 兰州: 兰州大学, 2007. | |
10 | Rodriguez C, Mrtensson L M D, Jensen E S, et al. Combining crop diversification practices can benefit cereal production in temperate climates. Agronomy for Sustainable Development, 2021, 41(4): 48. |
11 | Xie K Y, Wang Y X, Wan J C, et al. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29(3): 157-170. | |
12 | Yang H M, Unkovich M, McNeill A, et al. Symbiotic N2 fixation and nitrate utilisation in irrigated lucerne (Medicago sativa) systems. Biology and Fertility of Soils, 2011, 47(4): 377-385. |
13 | Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China. Acta Prataculturae Sinica, 2016, 25(12): 76-83. |
段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系. 草业学报, 2016, 25(12): 76-83. | |
14 | Lu Y X, Mu L, Yang H M. Advances in improved soil fertility with legume-grass mixtures. Chinese Journal of Grassland, 2019, 41(1): 94-100. |
芦奕晓, 牟乐, 杨惠敏. 豆科与禾本科牧草混播改良土壤的研究进展. 中国草地学报, 2019, 41(1): 94-100. | |
15 | Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1/2): 305-312. |
16 | Li H B. The dynamic process of plant responses to heterogeneous nutrient environments and the strategies of root management for nutrient acquisition. Beijing: Chinese Agriculture University, 2014. |
李洪波. 植物响应养分空间异质性分布的动态过程及调控根系获取养分的策略研究. 北京: 中国农业大学, 2014. | |
17 | Chen W L, Koide R T, Eissenstat D M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. Journal of Ecology, 2017, 106(1): 148-156. |
18 | Silva L S D, Sollenberger L E, Mullenix M K, et al. Soil carbon and nitrogen stocks in nitrogen-fertilized grass and legume-grass forage systems. Nutrient Cycling in Agroecosystems, 2022, 122: 105-117. |
19 | Zhang Y L, Zhang L J. A study on forage yield dynamics of Medicago varia/Bromus inermis mixture and single grassland. Chinese Journal of Grassland, 2006, 28(5): 23-28. |
张永亮, 张丽娟. 苜蓿、无芒雀麦混播及单播草地产草量动态研究. 中国草地学报, 2006, 28(5): 23-28. | |
20 | Berti M T, Lukaschewsky J, Samarappuli D P. Intercropping alfalfa into silage maize can be more profitable than maize silage followed by spring-seeded alfalfa. Agronomy, 2021, 11(6): 1196. |
21 | Zheng W, Zhu J Z, Jianaerguli, et al. Effects of different mixed sowing patterns on production performance of legume-grass mixture. Chinese Journal of Grassland, 2011, 33(5): 45-52. |
郑伟, 朱进忠, 加娜尔古丽, 等. 不同混播方式对豆禾混播草地生产性能的影响. 中国草地学报, 2011, 33(5): 45-52. | |
22 | Liu M, Gong J R, Wang Y H, et al. Effects of legume-grass mixes sowing on forage grass yield and quality in artificial grassland. Arid Zone Research, 2016, 33(1): 179-185. |
刘敏, 龚吉蕊, 王忆慧, 等. 豆禾混播建植人工草地对牧草产量和草质的影响. 干旱区研究, 2016, 33(1): 179-185. | |
23 | Zhang H H, Shi S L, Wu B, et al. A study of yield interactions in mixed sowing of alfalfa and three perennial grasses. Acta Prataculturae Sinica, 2022, 31(2): 159-170. |
张辉辉, 师尚礼, 武蓓, 等. 苜蓿与3种多年生禾草混播效应研究. 草业学报, 2022, 31(2): 159-170. | |
24 | Qi J, Zheng W, Zhang X H, et al. Determination and comparison of the production performance of pastures among different spatial structure of legume-grass mixtures. Pratacultural Science, 2016, 33(1): 116-128. |
祁军, 郑伟, 张鲜花, 等. 不同豆禾混播模式的草地生产性能. 草业科学, 2016, 33(1): 116-128. | |
25 | Wang P, Zhou D W, Zhang B T. Coexistence and inter-specific competition in grass-legume mixture. Acta Ecologica Sinica, 2009, 29(5): 2560-2567. |
王平, 周道玮, 张宝田. 禾-豆混播草地种间竞争与共存. 生态学报, 2009, 29(5): 2560-2567. | |
26 | Goldberg D E, Barton A M. Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. The American Naturalist, 1992, 139(4): 771-801. |
27 | Meza K, Vanek S J, Sueldo Y, et al. Grass-legume mixtures show potential to increase above-and belowground biomass production for Andean forage-based fallows. Agronomy, 2022, 12(1): 142. |
28 | Liu Q Y, Yun L, Chen Y F, et al. The dynamic analysis of forage yield and interspecific competition in alfalfa-grass mixed pasture. Acta Prataculturae Sinica, 2022, 31(3): 181-191. |
刘启宇, 云岚, 陈逸凡, 等. 苜蓿-禾草混播草地牧草产量及种间竞争关系的动态研究. 草业学报, 2022, 31(3): 181-191. | |
29 | Aponte A, Samarappuli D, Berti M T. Alfalfa-grass mixtures in comparison to grass and alfalfa monocultures. Agronomy Journal, 2019, 111(2): 628-638. |
30 | Zheng W, Jianaerguli, Tang G R, et al. Determination and comparison of community stability in different legume-grass mixes. Acta Prataculturae Sinica, 2015, 24(3): 155-167. |
郑伟, 加娜尔古丽, 唐高溶, 等. 不同混播方式下豆禾混播草地群落稳定性的测度与比较. 草业学报, 2015, 24(3): 155-167. | |
31 | Zhang Y L, Yu T F, Hao F, et al. Effects of fertilization and mixed sowing ratio on the production performance of grass-alfalfa mixed forage. Chinese Journal of Grassland, 2020, 42(6): 115-124. |
张永亮, 于铁峰, 郝凤, 等. 施肥与混播比例对豆禾混播牧草生产性能的影响. 中国草地学报, 2020, 42(6): 115-124. | |
32 | Jiang W T, Yuan G Y, Shen Y Y, et al. Effects of temperatures and mixed sowing ratios on growth and interspecific competition of Onobrychis viciaefolia and Elymus nutans community. Chinese Journal of Grassland, 2021, 43(4): 22-29. |
蒋汶桃, 苑广源, 沈禹颖, 等. 温度和混播比例对红豆草-垂穗披碱草群体生长及种间竞争的影响. 中国草地学报, 2021, 43(4): 22-29. | |
33 | Sturludóttir E, Brophy C, Berlanger G, et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass and Forage Science, 2014, 69(2): 229-240. |
34 | Li Q, Huang Y X, Zhong R Z, et al. Influence of Medicago sativa proportion on its individual nitrogen fixation efficiency and underlying physiological mechanism in legume-grass mixture grassland. Scientia Agriculture Sinica, 2020, 53(13): 2647-2656. |
李强, 黄迎新, 钟荣珍, 等. 豆-禾混播草地中紫花苜蓿比例对其固氮效率的影响及潜在生理机制. 中国农业科学, 2020, 53(13): 2647-2656. | |
35 | Ledgard S F, Steele K W. Biological nitrogen fixation in mixed legume/grass pastures. Plant and Soil, 1992, 141(1/2): 137-153. |
36 | Feng T X, De K J, Xiang X M, et al. Effects of different mixtures and proportions of Avena sativa and pea on forage yield and quality in alpine cold region. Acta Agrestia Sinica, 2022, 30(2): 487-494. |
冯廷旭, 德科加, 向雪梅, 等. 高寒地区燕麦与豌豆不同混播组合和比例对饲草产量及品质的影响. 草地学报, 2022, 30(2): 487-494. | |
37 | Li Q, Song Y T, Li G D, et al. Grass-legume mixtures impact soil N, species recruitment, and productivity in temperate steppe grassland. Plant and Soil, 2015, 394(1/2): 271-285. |
38 | Duan L H, Liu X L, Han B, et al. Effects of native species reseeding on the community stability of alpine meadow in the Tibet Plateau. Acta Agrestia Sinica, 2021, 29(8): 1793-1800. |
段丽辉, 刘晓丽, 韩冰, 等. 乡土物种补播对青藏高原高寒草甸群落稳定性的影响. 草地学报, 2021, 29(8): 1793-1800. | |
39 | Chen J S, Zhu R F, Gao C, et al. Interspecific competition of mixed grassland of bromegrass (Bromus inermis L.) and alfalfa (Medicago sativa L.) . Acta Agrestia Sinica, 2013, 21(6): 1157-1161. |
陈积山, 朱瑞芬, 高超, 等. 苜蓿和无芒雀麦混播草地种间竞争研究. 草地学报, 2013, 21(6): 1157-1161. | |
40 | Tilman D. Causes, consequences and ethics of biodiversity. Nature, 2000, 405(6783): 208-211. |
41 | Wang S P, Lamy T, Hallett L M, et al. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: linking theory to data. Ecography, 2019, 42(6): 1200-1211. |
[1] | Shi-min ZHANG, Jiao-yang ZHAO, Hui-sen ZHU, Kai WEI, Yong-xin WANG. Effects of selenium on metabolic transformation and morphogenesis in different varieties of alfalfa during the germination stage [J]. Acta Prataculturae Sinica, 2023, 32(4): 79-90. |
[2] | Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance [J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
[3] | Shou-jiang SUN, Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 152-162. |
[4] | Xuan-shuai LIU, Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa [J]. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
[5] | Qi WANG, Jia-hua ZHENG, Meng-li ZHAO, Jun ZHANG. Effects of mowing intensity on community characteristics and soil physicochemical properties of Stipa grandis steppe, Inner Mongolia, China [J]. Acta Prataculturae Sinica, 2023, 32(2): 26-34. |
[6] | Yu-bao SHA, Ganjurjav HASBAGAN, Guo-zheng HU, Xue-xia WANG, Jun YAN, Shi-cheng HE, Qing-zhu GAO. Response of soil nematode community structure and diversity to increased nitrogen in alpine meadows of northern Tibet [J]. Acta Prataculturae Sinica, 2023, 32(1): 154-164. |
[7] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[8] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[9] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[10] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[11] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[12] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[13] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[14] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[15] | Rui-jing WANG, Qi-sheng FENG, Zhe-ren JIN, Jie LIU, Yu-ting ZHAO, Jing GE, Tian-gang LIANG. A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 11-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||