Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (10): 104-114.DOI: 10.11686/cyxb2022444
Wen-jing WEI(), Zhao-yong SHI(), Meng-ge ZHANG, Shuang YANG, Wen-ya YANG
Received:
2022-11-10
Revised:
2023-01-04
Online:
2023-10-20
Published:
2023-07-26
Contact:
Zhao-yong SHI
Wen-jing WEI, Zhao-yong SHI, Meng-ge ZHANG, Shuang YANG, Wen-ya YANG. Response to fertilization of leaf functional traits of grassland plants with different mycorrhizal status[J]. Acta Prataculturae Sinica, 2023, 32(10): 104-114.
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 88.10 | <0.001 | 53.63 | <0.001 | 13.39 | <0.001 |
磷P | 82.14 | <0.001 | 19.92 | <0.001 | 9.79 | <0.001 |
钾K | 83.87 | <0.001 | 33.02 | <0.001 | 4.71 | 0.010 |
氮磷NP | 58.18 | <0.001 | 35.03 | <0.001 | 8.88 | <0.001 |
氮钾NK | 78.60 | <0.001 | 9.25 | 0.003 | 6.31 | 0.002 |
磷钾PK | 64.85 | <0.001 | 12.65 | <0.001 | 4.72 | 0.009 |
氮磷钾NPK | 89.23 | <0.001 | 45.05 | <0.001 | 13.61 | <0.001 |
Table 1 Effects of mycorrhizal status and species on SLA of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 88.10 | <0.001 | 53.63 | <0.001 | 13.39 | <0.001 |
磷P | 82.14 | <0.001 | 19.92 | <0.001 | 9.79 | <0.001 |
钾K | 83.87 | <0.001 | 33.02 | <0.001 | 4.71 | 0.010 |
氮磷NP | 58.18 | <0.001 | 35.03 | <0.001 | 8.88 | <0.001 |
氮钾NK | 78.60 | <0.001 | 9.25 | 0.003 | 6.31 | 0.002 |
磷钾PK | 64.85 | <0.001 | 12.65 | <0.001 | 4.72 | 0.009 |
氮磷钾NPK | 89.23 | <0.001 | 45.05 | <0.001 | 13.61 | <0.001 |
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 75.06 | <0.001 | 45.50 | <0.001 | 13.16 | <0.001 |
磷P | 71.33 | <0.001 | 15.60 | <0.001 | 8.80 | <0.001 |
钾K | 76.20 | <0.001 | 27.23 | <0.001 | 3.87 | 0.020 |
氮磷NP | 45.71 | <0.001 | 29.39 | <0.001 | 8.44 | <0.001 |
氮钾NK | 67.77 | <0.001 | 6.54 | 0.010 | 5.13 | 0.006 |
磷钾PK | 53.27 | <0.001 | 10.24 | 0.001 | 3.65 | 0.030 |
氮磷钾NPK | 51.61 | <0.001 | 8.63 | 0.004 | 2.74 | 0.070 |
Table 2 Effects of mycorrhizal status and species on leaf N concentration in leaves of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 75.06 | <0.001 | 45.50 | <0.001 | 13.16 | <0.001 |
磷P | 71.33 | <0.001 | 15.60 | <0.001 | 8.80 | <0.001 |
钾K | 76.20 | <0.001 | 27.23 | <0.001 | 3.87 | 0.020 |
氮磷NP | 45.71 | <0.001 | 29.39 | <0.001 | 8.44 | <0.001 |
氮钾NK | 67.77 | <0.001 | 6.54 | 0.010 | 5.13 | 0.006 |
磷钾PK | 53.27 | <0.001 | 10.24 | 0.001 | 3.65 | 0.030 |
氮磷钾NPK | 51.61 | <0.001 | 8.63 | 0.004 | 2.74 | 0.070 |
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 65.01 | <0.001 | 40.10 | <0.001 | 11.63 | <0.001 |
磷P | 64.69 | <0.001 | 14.79 | <0.001 | 7.03 | 0.001 |
钾K | 73.02 | <0.001 | 23.37 | <0.001 | 2.54 | 0.080 |
氮磷NP | 40.59 | <0.001 | 6.91 | <0.001 | 7.20 | <0.001 |
氮钾NK | 69.07 | <0.001 | 6.40 | 0.010 | 4.82 | 0.009 |
磷钾PK | 43.36 | <0.001 | 8.96 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.97 | <0.001 | 9.14 | 0.003 | 1.99 | 0.140 |
Table 3 Effects of mycorrhizal status and species on P concentration in leaves of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 65.01 | <0.001 | 40.10 | <0.001 | 11.63 | <0.001 |
磷P | 64.69 | <0.001 | 14.79 | <0.001 | 7.03 | 0.001 |
钾K | 73.02 | <0.001 | 23.37 | <0.001 | 2.54 | 0.080 |
氮磷NP | 40.59 | <0.001 | 6.91 | <0.001 | 7.20 | <0.001 |
氮钾NK | 69.07 | <0.001 | 6.40 | 0.010 | 4.82 | 0.009 |
磷钾PK | 43.36 | <0.001 | 8.96 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.97 | <0.001 | 9.14 | 0.003 | 1.99 | 0.140 |
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 64.84 | <0.001 | 39.79 | <0.001 | 11.67 | <0.001 |
磷P | 67.69 | <0.001 | 16.65 | <0.001 | 7.90 | <0.001 |
钾K | 73.00 | <0.001 | 23.35 | <0.001 | 2.54 | 0.080 |
氮磷NP | 41.12 | <0.001 | 21.17 | <0.001 | 7.39 | <0.001 |
氮钾NK | 68.00 | <0.001 | 6.38 | 0.010 | 4.65 | 0.010 |
磷钾PK | 43.37 | <0.001 | 8.98 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.98 | <0.001 | 9.15 | 0.003 | 1.99 | 0.140 |
Table 4 Effects of mycorrhizal status and species on K concentration in leaves of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 64.84 | <0.001 | 39.79 | <0.001 | 11.67 | <0.001 |
磷P | 67.69 | <0.001 | 16.65 | <0.001 | 7.90 | <0.001 |
钾K | 73.00 | <0.001 | 23.35 | <0.001 | 2.54 | 0.080 |
氮磷NP | 41.12 | <0.001 | 21.17 | <0.001 | 7.39 | <0.001 |
氮钾NK | 68.00 | <0.001 | 6.38 | 0.010 | 4.65 | 0.010 |
磷钾PK | 43.37 | <0.001 | 8.98 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.98 | <0.001 | 9.15 | 0.003 | 1.99 | 0.140 |
1 | Lu J Y, Hong M, Zhao B Y N M L, et al. Response of plant community structure and biomass to long-term nutrient addition in a Stipa baicalensis steppe. Acta Prataculturae Sinica, 2022, 31(4): 22-31. |
卢俊艳, 红梅, 赵巴音那木拉, 等. 贝加尔针茅草原植物群落结构及生物量对长期养分添加的响应. 草业学报, 2022, 31(4): 22-31. | |
2 | Zhao T Q, Ouyang Z Y, Jia L Q, et al. Ecosystem services and their valuation of China grassland. Acta Ecologica Sinica, 2004, 24(6): 1101-1110. |
赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价. 生态学报, 2004, 24(6): 1101-1110. | |
3 | Ke Y Z, Luo J F, Zhang L, et al. Leontopodium nanum reproductive allocation and leaf functional traits in degraded grassland of Qihai-Tibetan Plateau. Journal of West China Forestry Science, 2019, 48(2): 45-51. |
柯裕州, 罗久富, 张利, 等. 青藏高原草地退化过程中矮火绒草繁殖分配及叶功能性状差异. 西部林业科学, 2019, 48(2): 45-51. | |
4 | Zong N, Shi P L, Zheng L L, et al. Restoration effects of fertilization and grazing exclusion on different degraded alpine grasslands: Evidence from a 10-year experiment. Ecological Engineering, 2021, 170: 106361. |
5 | Sheldrake M, Rosenstock N P, Mangan S, et al. Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest. The International Society for Microbial Ecology Journal, 2018, 12: 2433-2445. |
6 | Liang J F, An J, Gao J Q, et al. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles. PLoS One, 2018, 13(1): e0191999. |
7 | Shi Z Y, Li K, Zhu X Y, et al. The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology, 2020, 43: 100877. |
8 | Dong N, Prentice I C, Wright I J, et al. Components of leaf-trait variation along environmental gradients. New Phytologist, 2020, 228: 82-94. |
9 | Gazol A, Uria-Diez J, Elustondo D, et al. Fertilization triggers 11 yr of changes in community assembly in Mediterranean grassland. Journal of Vegetation Science, 2016, 27(4): 728-738. |
10 | Juliane M, Sabrina G, Adriana G, et al. Changes in leaf functional traits with leaf age: When do leaves decrease their photosynthetic capacity in Amazonian trees? Tree Physiology, 2021, 42(5): 922-938. |
11 | Arena M E, Pastur G M, Lencinas M V, et al. Changes in the leaf nutrient and pigment contents of Berberis microphylla G. Forst. in relation to irradiance and fertilization. Heliyon, 2020, 6(1): e03264. |
12 | Wan S Z, Yang G S, Mao R. Responses of leaf nitrogen and phosphorus allocation patterns to nutrient additions in a temperate freshwater wetland. Ecological Indicators, 2020, 110: 105949. |
13 | Kim C, Jeong J, Park J H, et al. Growth and nutrient status of foliage as affected by tree species and fertilization in a fire-disturbed urban forest. Forests, 2015, 6(12): 2199-2213. |
14 | Li W J. Responses of species functional traits and community functional diversity to nitrogen addition in typical grassland of Yunwu Mountain, Ningxia. Jiangsu Agricultural Sciences, 2019, 47(7): 282-286. |
李维军. 宁夏云雾山典型草原物种功能性状和群落功能多样性对氮素添加的响应. 江苏农业科学, 2019, 47(7): 282-286. | |
15 | Smith S E, Read D J. Mycorrhizal symbiosis (Third Edition). San Diego, CA: Academic Press, 2008. |
16 | Bai L H, Srigger, Cao L X, et al. Research prospect and the important role of arbuscular mycorrhizae on forage grasses and grassland ecosystem. Acta Agrestia Sinica, 2013, 21(2): 214-221. |
白梨花, 斯日格格, 曹丽霞, 等. 丛枝菌根对牧草与草地生态系统的重要作用及其研究展望. 草地学报, 2013, 21(2): 214-221. | |
17 | Li K, Shi Z Y, Wang F Y. Physiological and ecological functions of arbuscular mycorrhizas and their roles in ecological restoration. Chinese Journal of Soil Science, 2017, 48(4): 996-1002. |
李珂, 石兆勇, 王发园. 丛枝菌根生理生态功能及其在生态恢复中的作用. 土壤通报, 2017, 48(4): 996-1002. | |
18 | Zou H, Zeng J. Effects of native mycorrhizal fungi infection on the seedling growth and leaf nutrition of Betula alnoides clones. Molecular Plant Breeding, 2018, 16(19): 6494-6503. |
邹慧, 曾杰. 土著菌根真菌侵染对西南桦无性系幼苗生长和叶片养分的影响. 分子植物育种, 2018, 16(19): 6494-6503. | |
19 | Luo J, Zhu C B, Dong Q, et al. Effects of arbuscular mycorrhizal fungi (AMF)on growth and leaf nutrients accumulation of flue-cured tobacco. Guizhou Agricultural Sciences, 2020, 48(11): 30-34. |
罗杰, 朱春波, 董清, 等. 丛枝菌根真菌(AMF)对烤烟生长及烟叶养分积累的影响. 贵州农业科学, 2020, 48(11): 30-34. | |
20 | Li S J, Wang H, Gou W, et al. Relationship between leaf functional traits of mixed desert plants and microbial diversity in rhizosphere. Ecology and Environmental Sciences, 2020, 29(9): 1713-1722. |
李善家, 王辉, 苟伟, 等. 混生荒漠植物叶片功能性状与其根际微生物多样性的关系. 生态环境学报, 2020, 29(9): 1713-1722. | |
21 | Sizonenko T A, Dubrovskiy Y A, Novakovskiy A B. Changes in mycorrhizal status and type in plant communities along altitudinal and ecological gradients-A case study from the Northern Urals (Russia). Mycorrhiza, 2020, 30: 445-454. |
22 | Bueno C G, Moora M, Gerz M, et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe.Global Ecology and Biogeography, 2017, 26(6): 690-699. |
23 | Menzel A, Hempel S, Manceur A M, et al. Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21: 78-88. |
24 | Hempel S, Götzenberger L, Kühn I, et al. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology, 2013, 94(6): 1389-1399. |
25 | Firn J, Mcgree J M, Harvey E, et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology & Evolution, 2019, 3: 400-406. |
26 | Koele N, Dickie I A, Jacek O, et al. No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 2012, 196: 845-852. |
27 | Yang S, Shi Z Y, Zhang M H, et al. Stoichiometry of carbon, nitrogen and phosphorus in shrub organs linked closely with mycorrhizal strategy in northern China. Frontiers in Plant Science, 2021, 12: 687347. |
28 | Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16(5): 299363. |
29 | Zhang M H, Shi Z Y, Zhang S, et al. A database on mycorrhizal traits of Chinese medicinal plants. Frontiers in Plant Science, 2022, 13: 840343. |
30 | Duodu G O, Goonetilleke A, Allen C, et al. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2015, 898: 19-27. |
31 | Wu H L, Li X P, Gao J, et al. The research progress of cold resistance mechanism of gramineous plants. Journal of Bamboo Research, 2014, 33(1): 7-11. |
吴惠俐, 李雪平, 高健, 等. 禾本科植物抗寒机理的研究进展. 竹子研究汇刊, 2014, 33(1): 7-11. | |
32 | Moora M. Mycorrhizal traits and plant communities: Perspectives for integration. Journal of Vegetation Science, 2014, 25(5): 1126-1132. |
33 | Zhang H Y, Lue X T, Hartmann H, et al. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Global Ecology and Biogeography, 2018, 27: 875-885. |
34 | Feng H, Meng P P, Dou Q, et al. Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants. Chinese Journal of Applied Ecology, 2019, 30(10): 3596-3604. |
冯欢, 蒙盼盼, 豆青, 等. 菌根真菌与植物共生营养交换机制研究进展. 应用生态学报, 2019, 30(10): 3596-3604. | |
35 | Allen M F, Swenson W, Querejeta J I, et al. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology, 2003, 47: 271-303. |
36 | Miatto R C, Wright I J, Batalha M A. Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant and Soil, 2016, 404(1/2): 13-33. |
37 | Wei L Y, Shangguan Z P. Relation between specific leaf areas and leaf nutritent contents of plants growing on slope lands with different farming-abandoned periods in the Loess Plateau. Acta Ecologica Sinica, 2008, 28(6): 2526-2535. |
韦兰英, 上官周平. 黄土高原不同退耕年限坡地植物比叶面积与养分含量的关系. 生态学报, 2008, 28(6): 2526-2535. | |
38 | Okada K, Okada S, Yasue K, et al. Six-year monitoring of pine ectomycorrhizal biomass under a temperate monsoon climate indicates significant annual fluctuations in relation to climatic factors. Ecological Research, 2011, 26(2): 411-419. |
39 | Bennett J A, Klironomos J. Climate, but not trait, effects on plant-soil feedback depend on mycorrhizal type in temperate forests. Ecosphere, 2018, 9(3): e02132. |
[1] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[2] | Yong-chao ZHANG, Guo-ling LIANG, Yan QIN, Wen-hui LIU, Zhi-feng JIA, Yong LIU, Xiang MA. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus [J]. Acta Prataculturae Sinica, 2022, 31(1): 229-237. |
[3] | Meng-han WANG, Li-li DONG, Fu-cui LI, Lie-bao HAN, Xiang WANG. Effects of different organic ∶inorganic nitrogen addition ratios on nitrogen distribution and transformation in a grassland soil [J]. Acta Prataculturae Sinica, 2022, 31(1): 36-46. |
[4] | Xin-guang YANG, Xi-lai LI, Pan-pan MA, Jing ZHANG, Wei ZHOU. Effects of fertilizer application rate on vegetation and soil restoration of coal mine spoils in an alpine mining area [J]. Acta Prataculturae Sinica, 2021, 30(8): 98-108. |
[5] | Xin-lei XU, Yan-tao SONG, Jing-dong ZHAO, Yun-na WU. Changes in forage quality and its relationship with plant diversity under fertilization and mowing in Hulun Buir meadow steppe [J]. Acta Prataculturae Sinica, 2021, 30(7): 1-10. |
[6] | Xiao-jiao WANG, Li-qun CAI, Peng QI, Ya-zhi Wang, Xiao-long CHEN, Jun Wu, Ren-zhi ZHANG. Effects of alternative fertilizer options on soil CO2 emission and carbon pool management index in a dryland soil [J]. Acta Prataculturae Sinica, 2021, 30(2): 32-45. |
[7] | GUO Jian-bo, ZHAO Guo-qiang, JIA Shu-gang, DONG Jun-fu, CHEN Long, WANG Shu-ping. Comprehensive evaluation of effects of fertilization on grassland quality index and soil properties in alpine steppe [J]. Acta Prataculturae Sinica, 2020, 29(9): 85-93. |
[8] | WU Yong, LIU Xiao-jing, LIN Fang, TONG Chang-chun. A data envelopment analysis study of alfalfa fertilization responses and economic return in the desert irrigation area of Hexi [J]. Acta Prataculturae Sinica, 2020, 29(9): 94-105. |
[9] | TONG Chang-chun, LIU Xiao-jing, LIN Fang, YU Tie-feng. Yield effect of optimisation of photosynthetic characteristics of alfalfa through balanced fertilization [J]. Acta Prataculturae Sinica, 2020, 29(8): 70-80. |
[10] | Zaituniguli Kuerban, Tuerxun Tuerhong, TU Zhen-dong, WANG Hui, Shan Qimike, Aikebaier Yilahong. Effects of fertilization on growth and yield of continuously cropped sweet sorghum [J]. Acta Prataculturae Sinica, 2020, 29(8): 81-92. |
[11] | XU Qi-wen, MA Shu-min, ZHU Bo, ZHANG Xiao-duan, XING Yi, DUAN Mei-chun, WANG Long-chang. Effects of the combined application of biochar and chemical fertilizer on fertility and microbial characteristics of purple soil and yield and quality of oilseed rape [J]. Acta Prataculturae Sinica, 2020, 29(5): 121-131. |
[12] | YOU Yong-liang, LI Yuan, ZHAO Hai-ming, WU Rui-xin, LIU Gui-bo. Effects of nitrogen and phosphate fertilizer application on yield and forage quality of forage triticale on the Haihe Plain [J]. Acta Prataculturae Sinica, 2020, 29(3): 137-146. |
[13] | FANG Yan-jie, ZHANG Xu-cheng, YU Xian-feng, HOU Hui-zhi, WANG Hong-li, MA Yi-fan, ZHANG Guo-ping, LEI Kang-ning. Effects of soil plastic mulching and fertilizer application on the water utilization and yield of Tartary buckwheat crops in a semiarid rain-fed area [J]. Acta Prataculturae Sinica, 2020, 29(11): 46-56. |
[14] | ZHANG Yong-liang, YU Tie-feng, HAO Feng, GAO Kai. Effects of fertilization and legume-grass ratio on forage yield and NPK utilization efficiency [J]. Acta Prataculturae Sinica, 2020, 29(11): 91-101. |
[15] | WANG Xiao-jiao, QI Peng, CAI Li-qun, CHEN Xiao-long, XIE Jun-hong, GAN Hui-jiong, ZHANG Ren-zhi. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau [J]. Acta Prataculturae Sinica, 2020, 29(10): 58-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||