Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (12): 14-23.DOI: 10.11686/cyxb2023041
Previous Articles Next Articles
Mei-qi GUO1(), Lin LIU1, Jing-ying JING1,2, Gao-wen YANG1,2, Ying-jun ZHANG1,2()
Received:
2023-02-11
Revised:
2023-03-09
Online:
2023-12-20
Published:
2023-10-18
Contact:
Ying-jun ZHANG
Mei-qi GUO, Lin LIU, Jing-ying JING, Gao-wen YANG, Ying-jun ZHANG. Species selection for no-tillage reseeding in grassland restoration based on plant-soil feedback[J]. Acta Prataculturae Sinica, 2023, 32(12): 14-23.
项目 Item | 全氮 Total N (mg·g-1) | 全碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 0.60±0.018a | 8.72±0.159a | 2.50±0.156a | 0.30±0.059a | 0.67±0.146a | 7.86±0.197a | 8.12±0.016a |
针茅S. capillata | 0.60±0.025a | 8.45±0.496a | 2.18±0.161a | 0.41±0.045a | 0.76±0.190a | 8.17±0.248a | 8.10±0.017a |
冷蒿A. frigida | 0.60±0.023a | 8.58±0.554a | 2.07±0.208a | 0.45±0.033a | 0.42±0.077a | 8.14±0.669a | 8.09±0.005a |
Table 1 Soil physicochemical properties in different plant domestication
项目 Item | 全氮 Total N (mg·g-1) | 全碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 0.60±0.018a | 8.72±0.159a | 2.50±0.156a | 0.30±0.059a | 0.67±0.146a | 7.86±0.197a | 8.12±0.016a |
针茅S. capillata | 0.60±0.025a | 8.45±0.496a | 2.18±0.161a | 0.41±0.045a | 0.76±0.190a | 8.17±0.248a | 8.10±0.017a |
冷蒿A. frigida | 0.60±0.023a | 8.58±0.554a | 2.07±0.208a | 0.45±0.033a | 0.42±0.077a | 8.14±0.669a | 8.09±0.005a |
微生物 Microorganism | 驯化土壤 Domesticated soil | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌Bacteria | 羊草L. chinensis | 6.76±0.0554ab | 4712.1±177.0ab |
针茅S. capillata | 6.84±0.0343a | 4936.6±108.1a | |
冷蒿A. frigida | 6.75±0.0230b | 4611.5±73.5b | |
真菌Fungi | 羊草L. chinensis | 4.19±0.3196a | 731.7±58.9a |
针茅S. capillata | 2.48±0.5452b | 658.7±59.8a | |
冷蒿A. frigida | 4.02±0.2531a | 686.7±46.2a |
Table 2 α-diversity of soil microbial in different plant domestication
微生物 Microorganism | 驯化土壤 Domesticated soil | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌Bacteria | 羊草L. chinensis | 6.76±0.0554ab | 4712.1±177.0ab |
针茅S. capillata | 6.84±0.0343a | 4936.6±108.1a | |
冷蒿A. frigida | 6.75±0.0230b | 4611.5±73.5b | |
真菌Fungi | 羊草L. chinensis | 4.19±0.3196a | 731.7±58.9a |
针茅S. capillata | 2.48±0.5452b | 658.7±59.8a | |
冷蒿A. frigida | 4.02±0.2531a | 686.7±46.2a |
斑块 Patch | 总氮 Total N (mg·g-1) | 总碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 1.62±0.041c | 23.53±0.945c | 5.01±0.485b | 11.14±0.173a | 7.66±0.411a | 23.01±0.990a | 7.76±0.006c |
冷蒿A. frigida | 1.87±0.030b | 26.61±0.853b | 3.48±0.055c | 7.69±0.293b | 4.35±0.469b | 17.31±0.397c | 7.95±0.014b |
星毛委陵菜P. acaulis | 2.31±0.048a | 31.34±1.044a | 6.35±0.345a | 5.33±0.453c | 3.12±0.121c | 19.63±0.297b | 8.04±0.008a |
Table 3 Soil abiotic characteristics of grassland in different patches
斑块 Patch | 总氮 Total N (mg·g-1) | 总碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 1.62±0.041c | 23.53±0.945c | 5.01±0.485b | 11.14±0.173a | 7.66±0.411a | 23.01±0.990a | 7.76±0.006c |
冷蒿A. frigida | 1.87±0.030b | 26.61±0.853b | 3.48±0.055c | 7.69±0.293b | 4.35±0.469b | 17.31±0.397c | 7.95±0.014b |
星毛委陵菜P. acaulis | 2.31±0.048a | 31.34±1.044a | 6.35±0.345a | 5.33±0.453c | 3.12±0.121c | 19.63±0.297b | 8.04±0.008a |
微生物 Microorganism | 斑块种类 Types of patch | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌 Bacteria | 羊草L. chinensis | 5.35±0.038a | 1089.50±46.200a |
冷蒿A. frigida | 5.17±0.015b | 989.28±148.450a | |
星毛委陵菜P. acaulis | 5.30±0.062a | 1105.40±60.660a | |
真菌 Fungi | 羊草L. chinensis | 3.44±0.154a | 710.65±70.398a |
冷蒿A. frigida | 3.33±0.217a | 618.04±61.608a | |
星毛委陵菜P. acaulis | 2.84±0.299b | 629.44±79.628a |
Table 4 α-diversity of soil microbial in different patches
微生物 Microorganism | 斑块种类 Types of patch | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌 Bacteria | 羊草L. chinensis | 5.35±0.038a | 1089.50±46.200a |
冷蒿A. frigida | 5.17±0.015b | 989.28±148.450a | |
星毛委陵菜P. acaulis | 5.30±0.062a | 1105.40±60.660a | |
真菌 Fungi | 羊草L. chinensis | 3.44±0.154a | 710.65±70.398a |
冷蒿A. frigida | 3.33±0.217a | 618.04±61.608a | |
星毛委陵菜P. acaulis | 2.84±0.299b | 629.44±79.628a |
项目 Item | 胡枝子 L. bicolor | 紫花苜蓿 M. sativa | 黄花苜蓿 M. falcata | 羊草 L.chinensis | 冰草 A. cristatum | 无芒雀麦 B. inermis |
---|---|---|---|---|---|---|
羊草L.chinensis | →√ | →√ | ↓√ | →√ | →√ | ↓√ |
针茅S. capillata | ↑ | → | → | ↓ | ↑ | → |
冷蒿A. frigida | ↑√ | →× | →× | ↓× | ↑√ | →× |
星毛委陵菜P. acaulis | × | × | × | × | √ | × |
Table 5 Methods of reseeding species selection in degraded grasslands
项目 Item | 胡枝子 L. bicolor | 紫花苜蓿 M. sativa | 黄花苜蓿 M. falcata | 羊草 L.chinensis | 冰草 A. cristatum | 无芒雀麦 B. inermis |
---|---|---|---|---|---|---|
羊草L.chinensis | →√ | →√ | ↓√ | →√ | →√ | ↓√ |
针茅S. capillata | ↑ | → | → | ↓ | ↑ | → |
冷蒿A. frigida | ↑√ | →× | →× | ↓× | ↑√ | →× |
星毛委陵菜P. acaulis | × | × | × | × | √ | × |
1 | Zhou J, Wilson G W T, Cobb A B, et al. Phosphorus and mowing improve native alfalfa establishment, facilitating restoration of grassland productivity and diversity. Land Degradation & Development, 2019, 30(6): 647-657. |
2 | Zhang Y J, Zhou J Q, Yang G W, et al. Theory and application of no-tillage reseeding in degraded grasslands. Chinese Science Bulletin, 2020, 65(16): 1546-1555. |
张英俊, 周冀琼, 杨高文, 等. 退化草原植被免耕补播修复理论与实践. 科学通报, 2020, 65(16): 1546-1555. | |
3 | Castelli F, Ceotto E, Borrelli L, et al. No-till permanent meadow promotes soil carbon sequestration and nitrogen use efficiency at the expense of productivity. Agronomy for Sustainable Development, 2017, 37(6): https://doi.org/10.1007/s13593-017-0462-6. |
4 | Zhang Y J, Yang G W, Liu N, et al. Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 2013, 22(2): 290-299. |
张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策. 草业学报, 2013, 22(2): 290-299. | |
5 | Reinsch T, Loges R, Kluss C, et al. Effect of grassland ploughing and reseeding on CO2 emissions and soil carbon stocks. Agriculture Ecosystems & Environment, 2018, 265: 374-383. |
6 | He J S, Pu H Y, Hu X W, et al. Close-to-nature restoration of degraded alpine grassland: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65(34): 3898-3908. |
贺金生, 卜海燕, 胡小文, 等. 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 2020, 65(34): 3898-3908. | |
7 | Rantala-Sykes B, Campbell D. Should I pick that? A scoring tool to prioritize and valuate native wild seed for restoration. Restoration Ecology, 2019, 27(1): 9-14. |
8 | Jimenez-Alfaro B, Frischie S, Stolz J, et al. Native plants for greening Mediterranean agroecosystems. Nature Plants, 2020, 6(3): 209-214. |
9 | Castle S C, Lekberg Y, Affleck D, et al. Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape. Journal of Ecology, 2016, 104(6): 1555-1565. |
10 | Png G K, Lambers H, Kardol P, et al. Biotic and abiotic plant-soil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development. Journal of Ecology, 2019, 107(1): 142-153. |
11 | Jiang Y, Bi X L, Huang J H, et al. Patterns and drivers of vegetation degradation in Xilin River Basin, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1132-1141. |
姜晔, 毕晓丽, 黄建辉, 等. 内蒙古锡林河流域植被退化的格局及驱动力分析. 植物生态学报, 2010, 34(10): 1132-1141. | |
12 | Zhang W G, Huang W B, Yang Z Y. The study on the relationship between mini-patch and degradation of pasture. Acta Prataculturae Sinica, 2003, 12(3): 44-50. |
张卫国, 黄文冰, 杨振宇. 草地微斑块与草地退化关系的研究. 草业学报, 2003,12(3): 44-50. | |
13 | Zhao X, Song Y Q, Xu T T, et al. Edge effects and spatial degradation process in highly fragmented grassland-impact on soil microbial community. Ecological Indicators, 2021, 132: 108307. |
14 | Yan Y, Tian L L, Du Z Y, et al. Carbon, nitrogen and phosphorus stocks differ among vegetation patch types in a degraded alpine steppe. Journal of Soils and Sediments, 2019, 19(4): 1809-1819. |
15 | Che R, Wang Y, Li K, et al. Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil and Tillage Research, 2019, 195: 104426. |
16 | Ma B, Dai Z, Wang H, et al. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in eastern China. Msystems, 2017, 2(1): e00174-16. |
17 | Gan H J, Emmett B D, Drinkwater L E. Soil management legacy alters weed-crop competition through biotic and abiotic pathways. Plant and Soil, 2021, 462(1/2): 543-560. |
18 | Gundale M J, Kardol P. Multi-dimensionality as a path forward in plant-soil feedback research. Journal of Ecology, 2021, 109(10): 3446-3465. |
19 | Bennett J A, Klironomos J. Mechanisms of plant-soil feedback: Interactions among biotic and abiotic drivers. New Phytologist, 2019, 222(1): 91-96. |
20 | Harrison K A, Bardgett R D. Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology, 2010, 98(2): 384-395. |
21 | Pei G T, Sun J F, He T X, et al. Effects of long-term human disturbances on soil microbial diversity and community structure in a Karst grassland ecosystem of northwestern Guangxi, China. Chinese Journal of Plant Ecology, 2021, 45(1): 74-84. |
裴广廷, 孙建飞, 贺同鑫, 等. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响. 植物生态学报, 2021, 45(1): 74-84. | |
22 | Wang Q, Zheng J H, Zhao M L, et al. Effects of mowing intensity on community characteristics and soil physicochemical properties of Stipa grandis steppe, Inner Mongolia, China. Acta Prataculturae Sinica, 2023, 32(2): 26-34. |
王琪, 郑佳华, 赵萌莉, 等.刈割强度对大针茅草原植物群落特征和土壤理化性质的影响.草业学报, 2023, 32(2): 26-34. | |
23 | Olsen S R, Cole C V, Watanabe F S. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington DC: United States Department of Agriculture, 1954. |
24 | Baxendale C, Orwin K H, Poly F, et al. Are plant-soil feedback responses explained by plant traits? New Phytologist, 2014, 204(2): 408-423. |
25 | Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 2016, 222: 213-222. |
26 | Fujji K, Shibata M, Kitajima K, et al. Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecological Research, 2018, 33(1): 149-160. |
27 | Su J S. Mechanism of plant-soil feedback in Stipa community’s succession in typical grassland after grazing exclusion on the Loess Plateau. Xianyang: Northwest A & F University, 2017. |
苏纪帅. 黄土高原典型草原针茅群落封育演替进程中的植物-土壤反馈机制研究. 咸阳: 西北农林科技大学, 2017. | |
28 | Qu Y B, Ren H Q, Gao S B, et al. Plant-soil feedback effects of four common species in the Inner Mongolia Steppe, China. Chinese Journal of Ecology, 2018, 37(2): 353-359. |
曲耀冰, 任慧琴, 高韶勃, 等. 内蒙古典型草原区四种主要物种的植物-土壤反馈作用. 生态学杂志, 2018, 37(2): 353-359. | |
29 | Nuske S J, Fajardo A, Nunez M A, et al. Soil biotic and abiotic effects on seedling growth exhibit context-dependent interactions: Evidence from a multi-country experiment on Pinus contorta invasion. New Phytologist, 2021, 232(1): 303-317. |
30 | Liu M, Zhang Z C, Sun J, et al. The response of vegetation biomass to soil properties along degradation gradients of alpine meadow at Zoige Plateau. Chinese Geographical Science, 2020, 30(3): 446-455. |
31 | Jiang L L, Han X G, Zhang G M, et al. The role of plant-soil feedbacks and land-use legacies in restoration of a temperate steppe in northern China. Ecological Research, 2010, 25(6): 1101-1111. |
32 | Cheeke T E, Schneider M, Saify A, et al. Role of soil biota in grassland restorations in high nutrient soils. Restoration Ecology, 2021, 30(4): e13549. |
33 | Qu G H, Guo J X. The relationship between plant communities and soil characteristics in Songnen Plain. Acta Prataculturae Sinica, 2003, 12(1): 18-22. |
曲国辉, 郭继勋. 松嫩平原不同演替阶段植物群落和土壤特性的关系. 草业学报, 2003, 12(1): 18-22. | |
34 | Zhan T Y, Hou G, Liu M, et al. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1010-1021. |
詹天宇, 侯阁, 刘苗, 等. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 2019, 36(4): 1010-1021. | |
35 | Yu Y, Zheng L, Zhou Y, et al. Changes in soil microbial community structure and function following degradation in a temperate grassland. Journal of Plant Ecology, 2020, 14(3): 384-397. |
36 | Luo Z M, Liu J X, Hu Y Q, et al. Taxonomic and functional diversity of soil microbial communities in subalpine meadow with different degradation degrees in mount Wutai. Environmental Science, 2023, 44(5): 2918-2927. |
罗正明, 刘晋仙, 胡砚秋, 等. 五台山不同退化程度亚高山草甸土壤微生物群落分类与功能多样性特征. 环境科学, 2023, 44(5): 2918-2927. | |
37 | Zhang X, Johnston E R, Barberan A, et al. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. Global Change Biology, 2017, 23(10): 4318-4332. |
38 | Paredes S H, Lebeis S L, Bailey J K. Giving back to the community: Microbial mechanisms of plant-soil interactions. Functional Ecology, 2016, 30(7): 1043-1052. |
[1] | Yuan MA, Xiao-li WANG, Yan-long WANG, Yu-shou MA, Hai-peng CUI. Review of grass seed pelletizing in ecological restoration [J]. Acta Prataculturae Sinica, 2023, 32(4): 197-207. |
[2] | Jing-dong ZHAO, Wuyunna, Yan-tao SONG. Effect of short-term fencing on the forage quality of plant communities in degraded grassland in Northwestern Liaoning [J]. Acta Prataculturae Sinica, 2021, 30(9): 51-61. |
[3] | Jing-dong ZHAO, Yan-tao SONG, Xin-lei XU, Wuyunna. Effects of nitrogen application and mowing on yield and quality of forage in degraded grassland in northwest Liaoning Province [J]. Acta Prataculturae Sinica, 2021, 30(8): 36-48. |
[4] | LI Hai-yun, YAO Tuo, MA Ya-chun, ZHANG Hui-rong, LU Xiao-wen, YANG Xiao-lei, XIA Dong-hui, ZHANG Jian-gui, GAO Ya-min. Soil bacterial community changes across a degradation gradient in alpine meadow grasslands in the central Qilian Mountains [J]. Acta Prataculturae Sinica, 2019, 28(8): 170-179. |
[5] | WANG Li-na, LUO Jiu-fu, YANG Mei-xiang, ZHANG Li, LIU Xue-min, DENG Dong-zhou, ZHOU Jin-xing. Effects of nitrogen addition on the soil microbial biomass C and microbial biomass N in degraded alpine grassland in Zoige County [J]. Acta Prataculturae Sinica, 2019, 28(7): 38-48. |
[6] | AN Chan, QIAO Jian-xia, SHANG Jian-ying, LI Jin-sheng, ZHAO Tian-ci, TANG Shi-ming, SHAO Xin-qing, HUANG Ding, WANG Kun, LIU Ke-si. Effects of artificial lakes on moisture, electrical conductivity and pH of adjacent soil on degraded grassland [J]. Acta Prataculturae Sinica, 2018, 27(8): 21-29. |
[7] | WANG Yu-qin, BAO Gen-sheng, SONG Mei-ling, YIN Ya-li, LIU Sheng-cai, YANG You-wu, YANG Ming, WANG Hong-sheng. Effects of nitrogen fertilizer on community structure and nutritional quality of degraded grassland of Stellera chamaejasme under two different management measures [J]. Acta Prataculturae Sinica, 2018, 27(12): 177-186. |
[8] | SARULA, HOU Xiang-yang, LI Jin-xiang, DING Yong, WU Xin-hong, YUN Xiang-jun. Organic carbon storage in vegetation-soil systems of typical grazing degraded steppes [J]. Acta Prataculturae Sinica, 2013, 22(5): 18-26. |
[9] | DENG Bin, REN Guo-hua, LIU Zhi-yun, SHANG Zhang-huan, PEI Shi-fang. Effect of 3-year fencing on soil seed banks of three alpine grassland communities [J]. Acta Prataculturae Sinica, 2012, 21(5): 23-31. |
[10] | LI Tian-cai, CAO Guang-min, LIU Qing-hai, ZHOU Guo-ying, SHI Sheng-bo, ZHANG De-gang. Characteristic of four trace elements in soil and dominant plants form degraded grassland, enclosed grassland on the north bank of Qinghai Lake [J]. Acta Prataculturae Sinica, 2012, 21(5): 213-221. |
[11] |
CHEN Dong-dong, XU Shi-xiao, ZHAO Xin-quan, ZHAO Liang.
Characterizing the evapotranspiration of a degraded grassland in the Sanjiangyuan Region of Qinghai province [J]. Acta Prataculturae Sinica, 2012, 21(3): 223-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||