Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (12): 1-13.DOI: 10.11686/cyxb2023058
Jia-hui LI1,2(), Lin HUANG3(), Jiang-wen FAN3
Received:
2023-02-21
Revised:
2023-03-09
Online:
2023-12-20
Published:
2023-10-18
Contact:
Lin HUANG
Jia-hui LI, Lin HUANG, Jiang-wen FAN. Ecological value and its spatiotemporal dynamic patterns of grassland in China[J]. Acta Prataculturae Sinica, 2023, 32(12): 1-13.
主要类别Major category | 核算指标Accounting indicator | 价值量评估方法Valueing method |
---|---|---|
供给价值Supply service value | 牧草供给Forage supply | 市场价值法Market price |
物种保育Species richness maintenance | 保育价值法Conservation value | |
调节价值Regulating service value | 水源涵养Water conservation 水源涵养Water conservation | 影子工程法Shadow price 替代成本法Replacement cost |
水土保持Soil retention | 替代成本法Replacement cost | |
防风固沙Windbreak and sand fixation | 恢复成本法Restoration cost | |
碳固定Carbon sequestration | 替代成本法Replacement cost | |
微气候调节Climate regulation | 替代成本法Replacement cost | |
氧气提供Oxygen supply | 替代成本法Replacement cost | |
文化价值Cultural service value | 生态旅游Ecotourism | 旅游产值法Tourism revenue |
Table 1 Accounting indicators and methods of grassland ecological value in China
主要类别Major category | 核算指标Accounting indicator | 价值量评估方法Valueing method |
---|---|---|
供给价值Supply service value | 牧草供给Forage supply | 市场价值法Market price |
物种保育Species richness maintenance | 保育价值法Conservation value | |
调节价值Regulating service value | 水源涵养Water conservation 水源涵养Water conservation | 影子工程法Shadow price 替代成本法Replacement cost |
水土保持Soil retention | 替代成本法Replacement cost | |
防风固沙Windbreak and sand fixation | 恢复成本法Restoration cost | |
碳固定Carbon sequestration | 替代成本法Replacement cost | |
微气候调节Climate regulation | 替代成本法Replacement cost | |
氧气提供Oxygen supply | 替代成本法Replacement cost | |
文化价值Cultural service value | 生态旅游Ecotourism | 旅游产值法Tourism revenue |
等级 Level | 丰富度 Richness | 单位面积价值 Value of per unit area (CNY·hm-2·a-1) |
---|---|---|
1 | 563≤Richness≤698 | 50000 |
2 | 455≤Richness≤562 | 40000 |
3 | 368≤Richness≤454 | 30000 |
4 | 282≤Richness≤367 | 20000 |
5 | 205≤Richness≤281 | 10000 |
6 | 130≤Richness≤204 | 5000 |
7 | 26≤Richness≤129 | 3000 |
Table 2 Classification of species richness and its value
等级 Level | 丰富度 Richness | 单位面积价值 Value of per unit area (CNY·hm-2·a-1) |
---|---|---|
1 | 563≤Richness≤698 | 50000 |
2 | 455≤Richness≤562 | 40000 |
3 | 368≤Richness≤454 | 30000 |
4 | 282≤Richness≤367 | 20000 |
5 | 205≤Richness≤281 | 10000 |
6 | 130≤Richness≤204 | 5000 |
7 | 26≤Richness≤129 | 3000 |
编号Number | 类别 Category | 类型 Strategy | 描述 Description |
---|---|---|---|
1 | C | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著减少的区域。 Areas with significantly reduced value of windbreak and sand fixation. |
2 | C | 水源涵养型Water conservation type | 水源涵养价值显著减少的区域。 Areas with significantly reduced value of water conservation. |
3 | C | 双重效应型Double-benefits type | 防风固沙、水源涵养、牧草供给、碳固定4项核心价值中,2项价值显著减少的区域。 Areas with the two of the four key ecosystem services which significantly decreased. |
4 | C | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著减少的区域。 Areas with the three of the four key ecosystem services which significantly decreased. |
5 | P | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著增加的区域。 Areas with significant increase in windbreak and sand fixation value. |
6 | P | 水源涵养型Water conservation type | 水源涵养价值显著增加的区域。 Areas with significant increase in water conservation value. |
7 | P | 牧草供给型Forage supply type | 牧草供给价值显著增加的区域。Areas with significant increase in forage supply value. |
8 | P | 碳固定型Carbon sequestration type | 碳固定价值显著增加的区域。Areas with significant increase in carbon sequestration value. |
9 | P | 双重效应型Double-benefits type | 4项核心价值中,2项价值显著增加的区域。 Areas with the two of the four key ecosystem services which significantly increased. |
10 | P | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著增加的区域。 Areas with the three of the four key ecosystem services which significantly increased. |
11 | P | 多重效应型Multiple-benefits type | 4项核心价值均显著增加的区域。 Areas with the four key ecosystem services which significantly increased. |
12 | C×P | 保护修复并重型 Conservation and protection focused type | 4项核心价值变化均不显著的区域。 Areas with insignificant changes in the four key ecosystem services. |
Table 3 Classification of adaptation strategies for optimizing and enhancing the grassland ecological value in China
编号Number | 类别 Category | 类型 Strategy | 描述 Description |
---|---|---|---|
1 | C | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著减少的区域。 Areas with significantly reduced value of windbreak and sand fixation. |
2 | C | 水源涵养型Water conservation type | 水源涵养价值显著减少的区域。 Areas with significantly reduced value of water conservation. |
3 | C | 双重效应型Double-benefits type | 防风固沙、水源涵养、牧草供给、碳固定4项核心价值中,2项价值显著减少的区域。 Areas with the two of the four key ecosystem services which significantly decreased. |
4 | C | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著减少的区域。 Areas with the three of the four key ecosystem services which significantly decreased. |
5 | P | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著增加的区域。 Areas with significant increase in windbreak and sand fixation value. |
6 | P | 水源涵养型Water conservation type | 水源涵养价值显著增加的区域。 Areas with significant increase in water conservation value. |
7 | P | 牧草供给型Forage supply type | 牧草供给价值显著增加的区域。Areas with significant increase in forage supply value. |
8 | P | 碳固定型Carbon sequestration type | 碳固定价值显著增加的区域。Areas with significant increase in carbon sequestration value. |
9 | P | 双重效应型Double-benefits type | 4项核心价值中,2项价值显著增加的区域。 Areas with the two of the four key ecosystem services which significantly increased. |
10 | P | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著增加的区域。 Areas with the three of the four key ecosystem services which significantly increased. |
11 | P | 多重效应型Multiple-benefits type | 4项核心价值均显著增加的区域。 Areas with the four key ecosystem services which significantly increased. |
12 | C×P | 保护修复并重型 Conservation and protection focused type | 4项核心价值变化均不显著的区域。 Areas with insignificant changes in the four key ecosystem services. |
1 | O’Mara F P. The role of grasslands in food security and climate change. Annals of Botany, 2012, 110(6): 1263-1270. |
2 | Wilsey B J. The biology of grasslands. Oxford, USA: Oxford University Press, 2018. |
3 | White R P, Murray S, Rohweder M, et al. Grassland ecosystems. Washington, DC, USA: World Resources Institute, 2000. |
4 | Bengtsson J, Bullock J M, Egoh B, et al. Grasslands-more important for ecosystem services than you might think. Ecosphere, 2019, 10(2): e02582. |
5 | Bai Y F, Cotrufo M F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022, 377: 603-608. |
6 | Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 2018, 115(16): 4021-4026. |
7 | Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2(10): 720-735. |
8 | Murphy B P, Andersen A N, Parr C L. The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371: 20150319. |
9 | Bond W J. Ancient grasslands at risk. Science, 2016, 351: 120-122. |
10 | Lavorel S, Grigulis K, Leitinger G, et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Regional Environmental Change, 2017, 17(8): 2251-2264. |
11 | Dass P, Houlton B Z, Wang Y P, et al. Grasslands may be more reliable carbon sinks than forests in California. Environmental Research Letters, 2018, 13(7): 074027. |
12 | Wu G L, Liu Y F, Cui Z, et al. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. Journal of Applied Ecology, 2020, 57(5): 875-885. |
13 | Costanza R, Kubiszewski I, Giovannini E, et al. Development: Time to leave GDP behind. Nature, 2014, 505: 283-285. |
14 | Liu H F, Hou L L, Kang N N, et al. A meta-regression analysis of the economic value of grassland ecosystem services in China. Ecological Indicators, 2022, 138: 108793. |
15 | Bastin J F, Finegold Y, Garcia C, et al. The global tree restoration potential. Science, 2020, 365(6448): 76-79. |
16 | Bullock J M, Aronson J, Newton A C, et al. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends in Ecology & Evolution, 2011, 26(10): 541-549. |
17 | Okpara U T, Stringer L C, Akhtar-Schuster M, et al. A social-ecological systems approach is necessary to achieve land degradation neutrality. Environmental Science & Policy, 2018, 89: 59-66. |
18 | Manning P, van der Plas F, Soliveres S, et al. Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2018, 2(3): 427-436. |
19 | Shao Q Q, Liu S C, Ning J, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153. |
邵全琴, 刘树超, 宁佳, 等. 2000-2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153. | |
20 | Ren Y J, Lu Y H, Fu B J. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: A meta-analysis. Ecological Engineering, 2016, 95: 542-550. |
21 | Li R Q, Li Y F, Hu H. Support of ecosystem services for spatial planning theories and practices. Acta Geographica Sinica, 2020, 75(11): 2417-2430. |
李睿倩, 李永富, 胡恒. 生态系统服务对国土空间规划体系的理论与实践支撑. 地理学报, 2020, 75(11): 2417-2430. | |
22 | Ouyang Z Y, Zhu C Q, Yang G B, et al. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecologica Sinica, 2013, 33(21): 6747-6761. |
欧阳志云, 朱春全, 杨广斌, 等. 生态系统生产总值核算: 概念、核算方法与案例研究. 生态学报, 2013, 33(21): 6747-6761. | |
23 | Xie G D, Zhang Y L, Lu C X, et al. Study on valuation of rangeland ecosystem services of China. Journal of Natural Resources, 2001(1): 47-53. |
谢高地, 张钇锂, 鲁春霞, 等. 中国自然草地生态系统服务价值. 自然资源学报, 2001(1): 47-53. | |
24 | Jiang L P, Qin Z H, Xie W, et al. Estimation of grassland ecosystem services value of China using remote sensing data. Journal of Natural Resources, 2007(2): 161-170. |
姜立鹏, 覃志豪, 谢雯, 等. 中国草地生态系统服务功能价值遥感估算研究. 自然资源学报, 2007(2): 161-170. | |
25 | Liu Y Y, Ren H Y, Zhou R L, et al. Estimation and dynamic analysis of the service value of grassland ecosystem in China. Acta Agrestia Sinica, 2021, 29(7): 1522-1532. |
刘洋洋, 任涵玉, 周荣磊, 等. 中国草地生态系统服务价值估算及其动态分析. 草地学报, 2021, 29(7): 1522-1532. | |
26 | Hutchinson M F, Xu T. Anusplin version 4.4 user guide. Canberra: Fenner School of Environment and Society, the Australian National University, 2013. |
27 | Cressie N A. Statistics for spatial data. Hoboken: Wiley Online Library, 1993. |
28 | Beijing Municipal Bureau of Quality and Technical Supervision. Technical specifications for valuation of forest resource assets, DB11/T 659-2018. Beijing: Beijing Municipal Bureau of Quality and Technical Supervision, 2018. |
北京市质量技术监督局. 森林资源资产价值评估技术规范, DB11/T 659-2018. 北京: 北京市质量技术监督局, 2018. | |
29 | National Forestry and Grassland Administration. Specifications for assessment of forest ecosystem services, GB/T 38582-2020. Beijing: State Administration for Market Regulation, 2020. |
国家林业和草原局.森林生态系统服务功能评估规范, GB/T 38582-2020. 北京: 中华人民共和国国家市场监督管理总局, 2020. | |
30 | Ma A N, Yu G R, He N P, et al. Above and below ground biomass relationships in China’s grassland vegetation. Quaternary Sciences, 2014, 34(4): 769-776. |
马安娜, 于贵瑞, 何念鹏, 等. 中国草地植被地上和地下生物量的关系分析. 第四纪研究, 2014, 34(4): 769-776. | |
31 | Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. |
沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. | |
32 | Wu D, Shao Q Q, Liu J Y, et al. Spatiotemporal dynamics of water regulation service of grassland ecosystem in China. Research of Soil and Water Conservation, 2016, 23(5): 256-260. |
吴丹, 邵全琴, 刘纪远, 等. 中国草地生态系统水源涵养服务时空变化. 水土保持研究, 2016, 23(5): 256-260. | |
33 | Zhu L Q, Xu S M, Chen P Y. Study on the impact of land use/land cover change on soil erosion in mountainous areas. Geographical Research, 2003, 22(4): 432-438. |
朱连奇, 许叔明, 陈沛云. 山区土地利用/覆被变化对土壤侵蚀的影响. 地理研究, 2003, 22(4): 432-438. | |
34 | Han G Z, Wang D C, Xie X J. Pedotransfer functions for prediction of soil bulk density for major types of soils in China. Acta Pedologica Sinica, 2016, 53(1): 93-102. |
韩光中, 王德彩, 谢贤健. 中国主要土壤类型的土壤容重传递函数研究. 土壤学报, 2016, 53(1): 93-102. | |
35 | Han Y W, Gao J X, Wang B L, et al. Evaluation of soil conservation function and its values in major eco-function areas of Loess Plateau in eastern Gansu Province. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 78-85. |
韩永伟, 高吉喜, 王宝良, 等. 黄土高原生态功能区土壤保持功能及其价值. 农业工程学报, 2012, 28(17): 78-85. | |
36 | Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-94. Global Change Biology, 2002, 8(8): 800-812. |
37 | Bond-Lamberty B, Wang C K, Gower S T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 2004, 10(10): 1756-1766. |
38 | OECD. Carbon pricing in times of COVID-19: What has changed in G20 economies? Paris, France: OECD Publishing, 2021. DOI: https://dx.doi.org/10.1787/8f030bcc-en. |
39 | Wang Y, Wang J S, Zhang Q. Drought risk status of grassland in China. Acta Prataculturae Sinica, 2022, 31(8): 1-12. |
王莺, 王健顺, 张强. 中国草原干旱灾害风险特征研究. 草业学报, 2022, 31(8): 1-12. | |
40 | Li G C, Wu M H, Yu X J. Introduction to Meta-analysis. Beijing: Science Press, 2021. |
41 | Dong S K, Shang Z H, Gao J X, et al. Enhancing the ecological services of the Qinghai-Tibetan Plateau’s grasslands through sustainable restoration and management in era of global change. Agriculture, Ecosystems & Environment, 2022, 326: 107756. |
42 | Ge J, Hou M J, Liang T G, et al. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Science of the Total Environment, 2022, 826: 154226. |
43 | Wang Y F, Lv W W, Xue K, et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 668-683. |
44 | Hou L L, Xia F, Chen Q H, et al. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nature Communications, 2021, 12(1): 4683. |
45 | Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015. Acta Geographica Sinica, 2020, 75(5): 961-974. |
金凯, 王飞, 韩剑桥, 等. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974. | |
46 | Xie G D. Ecological asset evaluation: Stock, quality and value. Environmental Protection, 2017, 45(11): 18-22. |
谢高地. 生态资产评价: 存量、质量与价值. 环境保护, 2017, 45(11): 18-22. |
[1] | Zhi-gui YANG, Jian-guo ZHANG, Jin-rong LI, Hong-yan YU, Li CHANG, Shu-hua YI, Yan-yan LYU, Yu-zhuo ZHANG, Bao-ping MENG. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years [J]. Acta Prataculturae Sinica, 2023, 32(9): 1-16. |
[2] | Guo-liang YU, Zi-jing MA, Zi-li LYU, Bin LIU. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China [J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78. |
[3] | Dong ZHANG, Chen HOU, Wen-ming MA, Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG. Study on soil enzyme activities under shrub encroachment gradients in alpine grassland [J]. Acta Prataculturae Sinica, 2023, 32(9): 79-92. |
[4] | Hui-long ZHANG, Xiu-chun YANG, Dong YANG, Ang CHEN, Min ZHANG. Spatio-temporal changes in grassland fractional vegetation cover in Inner Mongolia from 2000 to 2020 and a future forecast [J]. Acta Prataculturae Sinica, 2023, 32(8): 1-13. |
[5] | Xue-min LI, Tong-ning LI, Zhi-yu WU, Zhen-guo WU. Spatio-temporal evolution of grassland ecosystem service value in Inner Mongolia under multi scenario simulation [J]. Acta Prataculturae Sinica, 2023, 32(8): 14-27. |
[6] | Ji-liang LIU, Wen-zhi ZHAO, Yong-zhen WANG, Yi-lin FENG, Jin-xian QI, Yong-yuan LI. Effect of fencing and grazing on soil macro- and meso-arthropod diversity in alpine grassland ecosystems in the Qilian Mountains in the fall [J]. Acta Prataculturae Sinica, 2023, 32(8): 214-221. |
[7] | Hu-cheng XING, Xian-fang WANG, Qing ZHOU, Jing-cai YAN, Yu-cheng JIE. Types, grades, and utilization of grassland resources in 52 counties of Hunan Province [J]. Acta Prataculturae Sinica, 2023, 32(8): 91-103. |
[8] | Zhi-peng HUANG, Yi HUANG, Quan-jun YANG, Chao XIA, Yan ZHANG. The grassland agriculture of Mongolia and its capacity to inform development in China [J]. Acta Prataculturae Sinica, 2023, 32(6): 1-15. |
[9] | Ya-xian ZHANG, Jiang-wen FAN, Sui-zi WANG, Hai-yan ZHANG. Grassland investigation, monitoring and evaluation: international experience and insight [J]. Acta Prataculturae Sinica, 2023, 32(6): 203-213. |
[10] | Jie GAO, Xin-quan ZHAO, Wen-ting LIU, Xiao-xia YANG, Chun-ping ZHANG, Yang YU, Quan CAO, Yu-zhen LIU, Xue ZHANG, Quan-min DONG. Spatio-temporal analysis of the alpine grassland carrying capacity in Qinghai Province considering a supply-consumption relationship [J]. Acta Prataculturae Sinica, 2023, 32(5): 1-12. |
[11] | Jing MA, Fang-jun GUO, Zhi-hui ZOU, Lin SUN, Fang CHEN. Seasonal variation in vegetation during restoration of sandy grassland at the southern edge of the Tengger desert [J]. Acta Prataculturae Sinica, 2023, 32(5): 203-210. |
[12] | Kai-hong XU, Zhao SHI, Lei-chao MA, Ping WANG, Ang CHEN, Xing WANG, Ming CHENG, Yue-xin XIAO, Rong-tan WANG. Retrieval of grassland aboveground biomass based on airborne LiDAR and SuperView-1 data [J]. Acta Prataculturae Sinica, 2023, 32(5): 40-49. |
[13] | Rui HUA, Daerhan BAO, Rui DONG, Zhuang-sheng TANG, Bin CHU, Yuan-yuan HAO, Li-min HUA. Monitoring of rodent damage areas in grassland using unmanned aerial vehicle remote sensing technology [J]. Acta Prataculturae Sinica, 2023, 32(5): 71-82. |
[14] | Rui GUO, Shuai FU, Meng-jing HOU, Jie LIU, Chun-li MIAO, Xin-yue MENG, Qi-sheng FENG, Jin-sheng HE, Da-wen QIAN, Tian-gang LIANG. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data [J]. Acta Prataculturae Sinica, 2023, 32(4): 15-29. |
[15] | Yuan MA, Xiao-li WANG, Yan-long WANG, Yu-shou MA, Hai-peng CUI. Review of grass seed pelletizing in ecological restoration [J]. Acta Prataculturae Sinica, 2023, 32(4): 197-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||