Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (1): 102-116.DOI: 10.11686/cyxb2023100
Shuo HAN1,2(), Xiao-wen HAN1,2, Yi-feng HU4, Zhong-yi CHEN1,3, Yong-xing ZHU1,3, Jun-liang YIN1,2()
Received:
2023-04-03
Revised:
2023-06-14
Online:
2024-01-20
Published:
2023-11-23
Contact:
Jun-liang YIN
Shuo HAN, Xiao-wen HAN, Yi-feng HU, Zhong-yi CHEN, Yong-xing ZHU, Jun-liang YIN. Genome-wide identification and expression analysis of the SOD gene family in Alternanthera philoxeroides[J]. Acta Prataculturae Sinica, 2024, 33(1): 102-116.
试验措施 Test measure | |||
---|---|---|---|
草甘膦 | 0.080 | 江苏快达农化股份有限公司Jiangsu Kuaida Agrochemical Co., Ltd., http://www.kuaida.cn | 41% |
异丙隆 | 0.050 | 美丰农业科技(上海)有限公司Meifeng Agricultural Technology (Shanghai) Co., Ltd., https://www.maigoo.com/ | 50% |
噁草酮 | 0.040 | 大连越达农药化工有限公司Dalian Yueda Pesticide Chemical Co., Ltd., http://www.lnydnh.com/ | 13% |
乙羧氟草醚 | 0.008 | 潍坊鸿汇化工有限公司Weifang Honghui Chemical Co., Ltd., https://www.11315.com/ac/bs/10467196 | 10%,乳油Emulsifiable concentrate |
氯氟吡氧乙酸 Fluroxypyr | 0.010 | 山东绿霸化工股份有限公司Shandong Lvba Chemical Co., Ltd., http://www.lubachem.com/ | 20%,乳油Emulsifiable concentrate |
Table 1 Test the agent and the concentration
试验措施 Test measure | |||
---|---|---|---|
草甘膦 | 0.080 | 江苏快达农化股份有限公司Jiangsu Kuaida Agrochemical Co., Ltd., http://www.kuaida.cn | 41% |
异丙隆 | 0.050 | 美丰农业科技(上海)有限公司Meifeng Agricultural Technology (Shanghai) Co., Ltd., https://www.maigoo.com/ | 50% |
噁草酮 | 0.040 | 大连越达农药化工有限公司Dalian Yueda Pesticide Chemical Co., Ltd., http://www.lnydnh.com/ | 13% |
乙羧氟草醚 | 0.008 | 潍坊鸿汇化工有限公司Weifang Honghui Chemical Co., Ltd., https://www.11315.com/ac/bs/10467196 | 10%,乳油Emulsifiable concentrate |
氯氟吡氧乙酸 Fluroxypyr | 0.010 | 山东绿霸化工股份有限公司Shandong Lvba Chemical Co., Ltd., http://www.lubachem.com/ | 20%,乳油Emulsifiable concentrate |
基因 Gene | 上游引物序列 Forward primer sequence (5′-3′) | 下游引物序列 Reverse primer sequence (5′-3′) | 序列长度 Sequence length (bp) |
---|---|---|---|
ApSOD8 | GAAGAATAACAGGGCTTACACCTG | GCATGGCGTTCACTATCAAAA | 145 |
ApSOD9 | AGATGAAGTCCGACACGCG | TCCACCAGCATTCCCAGTAG | 202 |
ApSOD11 | ATCATTGACAGCCAGATTCCTC | ACCAATAATACCACAAGCCACTC | 156 |
ApSOD21 | GATACCTCCAACACTTCTACTCATGA | TCAAGTCCACCTCAACATTCTTC | 151 |
ApSOD35 | CGCTGTCAACCCTCTTGTATG | ATGCGACTTCTTTCTCACTTTCA | 200 |
ApSOD43 | CTCTGGGTTGGGCTATTGATT | TCCTGATTTGCGGTAGTTTCA | 157 |
Tubby | CGGTCTAGCCGAAGATTCCA | CGCTTGGTGAAGGCAGACATT | 232 |
Table 2 RT-qPCR primers for ApSODs genes
基因 Gene | 上游引物序列 Forward primer sequence (5′-3′) | 下游引物序列 Reverse primer sequence (5′-3′) | 序列长度 Sequence length (bp) |
---|---|---|---|
ApSOD8 | GAAGAATAACAGGGCTTACACCTG | GCATGGCGTTCACTATCAAAA | 145 |
ApSOD9 | AGATGAAGTCCGACACGCG | TCCACCAGCATTCCCAGTAG | 202 |
ApSOD11 | ATCATTGACAGCCAGATTCCTC | ACCAATAATACCACAAGCCACTC | 156 |
ApSOD21 | GATACCTCCAACACTTCTACTCATGA | TCAAGTCCACCTCAACATTCTTC | 151 |
ApSOD35 | CGCTGTCAACCCTCTTGTATG | ATGCGACTTCTTTCTCACTTTCA | 200 |
ApSOD43 | CTCTGGGTTGGGCTATTGATT | TCCTGATTTGCGGTAGTTTCA | 157 |
Tubby | CGGTCTAGCCGAAGATTCCA | CGCTTGGTGAAGGCAGACATT | 232 |
蛋白命名 Protein name | 蛋白ID Protein ID | Len (aa) | MW (kDa) | pI | Ins | GRAVY | Sub Loc |
---|---|---|---|---|---|---|---|
ApSOD1 | TR111530|c0_g1_i1.p1 | 205 | 21.09 | 6.85 | 36.23 | -0.259 | 叶绿体/细胞质Chloroplast/cytoplasm |
ApSOD2 | TR109813|c0_g1_i1.p1 | 15.73 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD3 | TR241345|c0_g1_i1.p1 | 16.37 | 线粒体Mitochondrion | ||||
ApSOD4 | TR236337|c0_g1_i1.p1 | 12.99 | 细胞质Cytoplasm | ||||
ApSOD5 | TR248740|c0_g1_i1.p1 | 9.69 | 叶绿体Chloroplast | ||||
ApSOD6 | TR126747|c0_g1_i1.p1 | 10.19 | 细胞质/线粒体Cytoplasm/mitochondrion | ||||
ApSOD7 | TR213092|c0_g1_i1.p1 | 15.42 | 叶绿体/细胞质/线粒体/细胞核Chloroplast/cytoplasm/mitochondrion/nucleus | ||||
ApSOD8 | TR54897|c0_g1_i1.p1 | 16.08 | 叶绿体Chloroplast | ||||
ApSOD9 | TR34452|c3_g1_i3.p1 | 22.70 | 叶绿体Chloroplast | ||||
ApSOD10 | TR14803|c0_g1_i1.p1 | 7.98 | 叶绿体Chloroplast | ||||
ApSOD11 | TR110003|c0_g2_i1.p1 | 15.18 | 叶绿体Chloroplast | ||||
ApSOD12 | TR37745|c0_g1_i1.p1 | 16.18 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD13 | TR262285|c0_g1_i1.p1 | 22.40 | 叶绿体Chloroplast | ||||
ApSOD14 | TR60741|c0_g1_i1.p1 | 22.59 | 叶绿体Chloroplast | ||||
ApSOD15 | TR41468|c0_g1_i1.p1 | 20.46 | 叶绿体Chloroplast | ||||
ApSOD16 | TR279215|c0_g1_i1.p1 | 10.78 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD17 | TR105699|c0_g1_i1.p1 | 50.96 | 叶绿体Chloroplast | ||||
ApSOD18 | TR109227|c0_g1_i1.p1 | 8.19 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD19 | TR286036|c1_g1_i1.p1 | 34.96 | 叶绿体Chloroplast | ||||
ApSOD20 | TR184370|c0_g1_i1.p1 | 21.48 | 叶绿体Chloroplast | ||||
ApSOD21 | TR109991|c0_g1_i1.p1 | 33.09 | 叶绿体Chloroplast | ||||
ApSOD22 | TR224061|c0_g1_i1.p1 | 9.10 | 叶绿体Chloroplast | ||||
ApSOD23 | TR20651|c0_g1_i1.p1 | 13.09 | 线粒体Mitochondrion | ||||
ApSOD24 | TR113639|c0_g1_i1.p1 | 10.64 | 线粒体Mitochondrion | ||||
ApSOD25 | TR110087|c5_g5_i2.p1 | 14.27 | 线粒体Mitochondrion | ||||
ApSOD26 | TR110087|c5_g3_i1.p1 | 19.32 | 线粒体Mitochondrion | ||||
ApSOD27 | TR128622|c0_g1_i1.p1 | 8.52 | 线粒体Mitochondrion | ||||
ApSOD28 | TR47142|c1_g1_i1.p1 | 13.80 | 线粒体Mitochondrion | ||||
ApSOD29 | TR286587|c0_g1_i1.p1 | 25.44 | 线粒体Mitochondrion | ||||
ApSOD30 | TR247726|c0_g2_i1.p1 | 20.75 | 线粒体Mitochondrion | ||||
ApSOD31 | TR247726|c0_g1_i1.p1 | 28.63 | 线粒体Mitochondrion | ||||
ApSOD32 | TR37189|c0_g1_i1.p1 | 24.81 | 线粒体Mitochondrion | ||||
ApSOD33 | TR182990|c0_g1_i1.p3 | 10.75 | 线粒体Mitochondrion | ||||
ApSOD34 | TR137752|c0_g1_i1.p1 | 8.47 | 线粒体Mitochondrion | ||||
ApSOD35 | TR97445|c0_g1_i1.p1 | 31.26 | 叶绿体Chloroplast | ||||
ApSOD36 | TR66090|c9_g1_i1.p1 | 30.14 | 线粒体Mitochondrion | ||||
ApSOD37 | TR266216|c0_g1_i1.p1 | 18.24 | 线粒体Mitochondrion | ||||
ApSOD38 | TR172914|c0_g1_i1.p1 | 23.33 | 线粒体Mitochondrion | ||||
ApSOD39 | TR41361|c0_g1_i1.p1 | 9.40 | 线粒体Mitochondrion | ||||
ApSOD40 | TR272187|c0_g1_i1.p1 | 6.98 | 线粒体Mitochondrion | ||||
ApSOD41 | TR109124|c3_g1_i1.p1 | 8.97 | 线粒体Mitochondrion | ||||
ApSOD42 | TR110087|c5_g4_i1.p1 | 8.39 | 线粒体Mitochondrion | ||||
ApSOD43 | TR110087|c5_g1_i1.p1 | 16.55 | 线粒体Mitochondrion |
Table 3 Protein characterization of ApSODs
蛋白命名 Protein name | 蛋白ID Protein ID | Len (aa) | MW (kDa) | pI | Ins | GRAVY | Sub Loc |
---|---|---|---|---|---|---|---|
ApSOD1 | TR111530|c0_g1_i1.p1 | 205 | 21.09 | 6.85 | 36.23 | -0.259 | 叶绿体/细胞质Chloroplast/cytoplasm |
ApSOD2 | TR109813|c0_g1_i1.p1 | 15.73 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD3 | TR241345|c0_g1_i1.p1 | 16.37 | 线粒体Mitochondrion | ||||
ApSOD4 | TR236337|c0_g1_i1.p1 | 12.99 | 细胞质Cytoplasm | ||||
ApSOD5 | TR248740|c0_g1_i1.p1 | 9.69 | 叶绿体Chloroplast | ||||
ApSOD6 | TR126747|c0_g1_i1.p1 | 10.19 | 细胞质/线粒体Cytoplasm/mitochondrion | ||||
ApSOD7 | TR213092|c0_g1_i1.p1 | 15.42 | 叶绿体/细胞质/线粒体/细胞核Chloroplast/cytoplasm/mitochondrion/nucleus | ||||
ApSOD8 | TR54897|c0_g1_i1.p1 | 16.08 | 叶绿体Chloroplast | ||||
ApSOD9 | TR34452|c3_g1_i3.p1 | 22.70 | 叶绿体Chloroplast | ||||
ApSOD10 | TR14803|c0_g1_i1.p1 | 7.98 | 叶绿体Chloroplast | ||||
ApSOD11 | TR110003|c0_g2_i1.p1 | 15.18 | 叶绿体Chloroplast | ||||
ApSOD12 | TR37745|c0_g1_i1.p1 | 16.18 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD13 | TR262285|c0_g1_i1.p1 | 22.40 | 叶绿体Chloroplast | ||||
ApSOD14 | TR60741|c0_g1_i1.p1 | 22.59 | 叶绿体Chloroplast | ||||
ApSOD15 | TR41468|c0_g1_i1.p1 | 20.46 | 叶绿体Chloroplast | ||||
ApSOD16 | TR279215|c0_g1_i1.p1 | 10.78 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD17 | TR105699|c0_g1_i1.p1 | 50.96 | 叶绿体Chloroplast | ||||
ApSOD18 | TR109227|c0_g1_i1.p1 | 8.19 | 叶绿体/细胞质Chloroplast/cytoplasm | ||||
ApSOD19 | TR286036|c1_g1_i1.p1 | 34.96 | 叶绿体Chloroplast | ||||
ApSOD20 | TR184370|c0_g1_i1.p1 | 21.48 | 叶绿体Chloroplast | ||||
ApSOD21 | TR109991|c0_g1_i1.p1 | 33.09 | 叶绿体Chloroplast | ||||
ApSOD22 | TR224061|c0_g1_i1.p1 | 9.10 | 叶绿体Chloroplast | ||||
ApSOD23 | TR20651|c0_g1_i1.p1 | 13.09 | 线粒体Mitochondrion | ||||
ApSOD24 | TR113639|c0_g1_i1.p1 | 10.64 | 线粒体Mitochondrion | ||||
ApSOD25 | TR110087|c5_g5_i2.p1 | 14.27 | 线粒体Mitochondrion | ||||
ApSOD26 | TR110087|c5_g3_i1.p1 | 19.32 | 线粒体Mitochondrion | ||||
ApSOD27 | TR128622|c0_g1_i1.p1 | 8.52 | 线粒体Mitochondrion | ||||
ApSOD28 | TR47142|c1_g1_i1.p1 | 13.80 | 线粒体Mitochondrion | ||||
ApSOD29 | TR286587|c0_g1_i1.p1 | 25.44 | 线粒体Mitochondrion | ||||
ApSOD30 | TR247726|c0_g2_i1.p1 | 20.75 | 线粒体Mitochondrion | ||||
ApSOD31 | TR247726|c0_g1_i1.p1 | 28.63 | 线粒体Mitochondrion | ||||
ApSOD32 | TR37189|c0_g1_i1.p1 | 24.81 | 线粒体Mitochondrion | ||||
ApSOD33 | TR182990|c0_g1_i1.p3 | 10.75 | 线粒体Mitochondrion | ||||
ApSOD34 | TR137752|c0_g1_i1.p1 | 8.47 | 线粒体Mitochondrion | ||||
ApSOD35 | TR97445|c0_g1_i1.p1 | 31.26 | 叶绿体Chloroplast | ||||
ApSOD36 | TR66090|c9_g1_i1.p1 | 30.14 | 线粒体Mitochondrion | ||||
ApSOD37 | TR266216|c0_g1_i1.p1 | 18.24 | 线粒体Mitochondrion | ||||
ApSOD38 | TR172914|c0_g1_i1.p1 | 23.33 | 线粒体Mitochondrion | ||||
ApSOD39 | TR41361|c0_g1_i1.p1 | 9.40 | 线粒体Mitochondrion | ||||
ApSOD40 | TR272187|c0_g1_i1.p1 | 6.98 | 线粒体Mitochondrion | ||||
ApSOD41 | TR109124|c3_g1_i1.p1 | 8.97 | 线粒体Mitochondrion | ||||
ApSOD42 | TR110087|c5_g4_i1.p1 | 8.39 | 线粒体Mitochondrion | ||||
ApSOD43 | TR110087|c5_g1_i1.p1 | 16.55 | 线粒体Mitochondrion |
1 | Sun S A, Deng Z Y, Xiong J Y, et al. Research progress on biological and ecological control of Alternanthera philoxeroides. South China Agriculture, 2022, 16(9): 164-167. |
孙思昂, 邓梓妍, 熊佳瑶, 等. 空心莲子草生物及生态防治研究进展. 南方农业, 2022, 16(9): 164-167. | |
2 | Su T, Wu S J, Hu S Z, et al. Advance in invasion and clonal characteristics of the alien species Alternanthera philoxeroides. South China Forestry Science, 2021, 49(1): 44-47, 54. |
苏田, 吴姝瑾, 胡姝珍, 等. 外来种空心莲子草的入侵及其克隆特性综述. 南方林业科学, 2021, 49(1): 44-47, 54. | |
3 | Gupta S, Dong Y N, Dijkwel P P, et al. Genome-wide analysis of ROS antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation. International Journal of Molecular Sciences, 2019, 20(12): 3101. |
4 | Mhamdi A, Van B F. Reactive oxygen species in plant development. Development, 2018, 145(15): dev164376. |
5 | Abreu I A, Cabelli D E. Superoxide dismutases-A review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2010, 1804(2): 263-274. |
6 | Dong L, He Y Z, Wang Y L, et al. Research progress on application of superoxide dismutase (SOD). Journal of Agricultural Science and Technology, 2013, 15(5): 53-58. |
董亮, 何永志, 王远亮, 等. 超氧化物歧化酶(SOD)的应用研究进展. 中国农业科技导报, 2013, 15(5): 53-58. | |
7 | Ren Y Y, Jiang H, Ma L, et al. Identification of potato (Solanum tuberosum) SOD gene family and its response in damaged tubers. Journal of Agricultural Biotechnology, 2021, 29(7): 1248-1259. |
任映玥, 姜红, 马丽, 等. 马铃薯SOD基因家族鉴定及其在损伤块茎中的响应. 农业生物技术学报, 2021, 29(7): 1248-1259. | |
8 | Hao H D. Studies on the phytotoxicity symptoms of commonly used herbicides to radish and cabbage and the mitigation effects of some antidotes. Zhengzhou: Henan Agricultural University, 2015. |
郝红丹. 常用除草剂对萝卜、白菜的药害和几种缓解剂对其药害的缓解效果研究. 郑州: 河南农业大学, 2015. | |
9 | Matters G L, Scandalios J G. Effect of the free radical-generating herbicide paraquat on the expression of the superoxide dismutase (SOD) genes in maize. Biochimica et Biophysica Acta (BBA)-General Subjects, 1986, 882(1): 29-38. |
10 | Dong Y. Study on the physiological response of broomcorn millet to different herbicides. Crops, 2022, 38(5): 255-260. |
董扬. 糜子对不同除草剂的生理响应机制研究. 作物杂志, 2022, 38(5): 255-260. | |
11 | Gao J M, Xiao Q, Ding L P, et al. Differential responses of lipid peroxidation and antioxidants in Alternanthera philoxeroides and Oryza sativa subjected to drought stress. Plant Growth Regulation, 2008, 56(1): 89-95. |
12 | Xu X Y, Shi G X, Wang J, et al. Copper-induced oxidative stress in Alternanthera philoxeroides callus. Plant Cell, Tissue and Organ Culture (PCTOC), 2011, 106(2): 243-251. |
13 | Zang Y, Chen J, Li R X, et al. Genome-wide analysis of the superoxide dismutase (SOD) gene family in Zostera marina and expression profile analysis under temperature stress. PeerJ, 2020, 8(4): e9063. |
14 | Song J B, Zeng L M, Chen R R, et al. In silico identification and expression analysis of superoxide dismutase (SOD) gene family in Medicago truncatula. 3 Biotech, 2018, 8(8): 348. |
15 | Wang W, Zhang X P, Deng F N, et al. Genome-wide characterization and expression analyses of superoxide dismutase (SOD) genes in Gossypium hirsutum. BMC Genomics, 2017, 18(1): 376. |
16 | Feng X, Lai Z X, Lin Y L, et al. Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genomics, 2015, 16(1): 823. |
17 | Jiang W Q, Yang L, He Y Q, et al. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). PeerJ, 2018, 7: e8062. |
18 | Zhu Y X, Jiang X C, Han X W, et al. Characterization the coding and non-coding RNA components in the transcriptome of invasion weed Alternanthera philoxeroides. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(1): 12242. |
19 | Yin J L, Wang L X, Zhao J, et al. Genome-wide characterization of the C2H2 zinc-finger genes in Cucumis sativus and functional analyses of four CsZFPs in response to stresses. BMC Plant Biology, 2020, 20(1): 359. |
20 | Chen Q, Xu X Y, Wang J C, et al. Identification of a WRKY gene family based on full-length transcriptome sequences and analysis of response patterns under salt stress in Halogeton glomeratus. Acta Prataculturae Sinica, 2022, 31(12): 146-157. |
陈倩, 徐晓芸, 汪军成, 等. 基于全长转录组的盐生草WRKY基因家族的鉴定及其盐胁迫响应模式分析. 草业学报, 2022, 31(12): 146-157. | |
21 | Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673-4680. |
22 | Zou Z, Huang Q X, An F. Genome-wide identification, classification and expression analysis of Lhc supergene family in castor bean (Ricinus communis L.). Agricultural Biotechnology, 2013, 2(6): 44-48, 51. |
23 | Li Y T, Liu X, Xiao Y X, et al. Genome-wide characterization and function analysis uncovered roles of wheat LIMs in responding to adverse stresses and TaLIM8-4D function as a susceptible gene. The Plant Genome, 2022, 15(3): e20246. |
24 | Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server//Walker, John M. The proteomics protocols handbook. Totowa: Humana Press, 2005: 571-607. |
25 | Li W, Zhao L R, Zhang J P, et al. Genome-wide identification and analysis of the DMP gene family in flax(Linum usitatissimum). Acta Prataculturae Sinica, 2023, 32(3): 91-106. |
李雯, 赵丽蓉, 张建平, 等. 亚麻DMP基因家族的全基因组鉴定与分析. 草业学报, 2023, 32(3): 91-106. | |
26 | Yang L, Jiang X C, Yang J, et al. Identification, characterization, and expression analysis of metal tolerance protein (MTP) genes in Alternanthera philoxeroides. Pratacultural Science, 2020, 37(8): 1516-1527. |
杨蕾, 蒋昕晨, 杨杰, 等. 空心莲子草MTP基因家族的鉴定、特征及表达分析. 草业科学, 2020, 37(8): 1516-1527. | |
27 | Li Y P, Wei N, Zhai Q Y, et al. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress. Acta Prataculturae Sinica, 2023, 32(4): 101-111. |
李艳鹏, 魏娜, 翟庆妍, 等. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析. 草业学报, 2023, 32(4): 101-111. | |
28 | Zhu Y X, Yin J L, Liang Y F, et al. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Ecotoxicology and Environmental Safety, 2019, 174: 245-254. |
29 | Tian J, Li Y T, Hu Y F, et al. Mining the roles of cucumber DUF966 genes in fruit development and stress response. Plants, 2022, 11(19): 2497. |
30 | Yin J L, Liu M Y, Ma D F, et al. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology & Technology, 2018, 136: 90-98. |
31 | Liu J L, Ouyang L J, Zeng J L, et al. Genome-wide analysis of rice SOD gene family and expression research under stress. Molecular Plant Breeding, 2018, 16(9): 8. |
刘家林, 欧阳林娟, 曾嘉丽, 等. 水稻SOD基因家族的全基因组分析及逆境胁迫下表达研究. 分子植物育种, 2018, 16(9): 8. | |
32 | Zhang X, Zhang L T, Chen Y Y, et al. Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley. Plant Growth Regulation, 2021, 94(1): 49-60. |
33 | Ye W H, Li J, Cao H L, et al. Genetic uniformity of Alternanthera philoxeroides in South China. Weed Research, 2003, 43(4): 297-302. |
34 | Gao Z J, Li M, Gao X X, et al. Biological activity of 24 herbicides against Alternanthera philoxeroides (Mart.) Griseb. Chinese Agricultural Science Bulletin, 2010, 26(21): 256-261. |
高宗军, 李美, 高兴祥, 等. 24种除草剂对空心莲子草的生物活性. 中国农学通报, 2010, 26(21): 256-261. | |
35 | Ma M Y, Fu J W, Zhu D H, et al. Control effects of three herbicides on the alligator weed Alternanthera philoxeroides. Plant Protection, 2009, 35(4): 154-157. |
马明勇, 傅建炜, 朱道弘, 等. 不同除草剂对空心莲子草的控制作用评价. 植物保护, 2009, 35(4): 154-157. | |
36 | Wu T X, He J R, Wang H C, et al. Susceptibility of Alternanthera philoxeroides (Mart.) Griseb to different herbicides. Journal of Weed Science, 2019, 37(4): 45-49. |
吴田乡, 贺建荣, 王红春, 等. 外来入侵植物空心莲子草对不同除草剂的敏感性. 杂草学报, 2019, 37(4): 45-49. | |
37 | Su W, Raza A, Gao A, et al. Genome-wide analysis and expression profile of superoxide dismutase (SOD) gene family in rapeseed (Brassica napus L.) under different hormones and abiotic stress conditions. Antioxidants, 2021, 10(8): 1182. |
38 | Filiz E, Tombuloglu H. Genome-wide distribution of superoxide dismutase (SOD) gene families in Sorghum bicolor. Turkish Journal of Biology, 2015, 39(1): 49-59. |
39 | Han L M, Hua W P, Cao X Y, et al. Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza. Gene, 2020, 742: 144603. |
40 | Cai K. Bioinformatics and function analysis of SOD gene family in Phyllostachys edulis. Hangzhou: Zhejiang Agricultural and Forestry University, 2018. |
蔡凯. 毛竹SOD基因家族生物信息学与功能分析. 杭州: 浙江农林大学, 2018. | |
41 | Feng K, Yu J H, Cheng Y, et al. The SOD gene family in tomato: Identification, phylogenetic relationships, and expression patterns. Frontiers in Plant Science, 2016, 7: 1279. |
42 | Wang W, Xia M X, Chen J, et al. Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. Plant Gene, 2016, 6: 18-29. |
43 | Kliebenstein D J, Monde R A, Last R L. Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiology, 1998, 118(2): 637-650. |
44 | Huang W L. Study on the control of 20% fluroxypyr emulsified oil against hollow lotus seed grass in rice ridge. Modern Agricultural Science and Technology, 2005(8): 27-28. |
黄蔚兰. 20%氯氟吡氧乙酸乳油防除水稻田埂空心莲子草试验研究. 现代农业科技, 2005(8): 27-28. | |
45 | Lou Y L, Deng Y Y, Shen J L, et al. Effects of mestsulfuron-methyl and glyphosate on acetolactate synthase activities and shikimate levels of Alternanthera philoxeroides. Journal of Plant Protection, 2005(2): 185-188. |
娄远来, 邓渊钰, 沈晋良, 等. 甲磺隆和草甘膦对空心莲子草乙酰乳酸合酶活性和莽草酸含量的影响. 植物保护学报, 2005(2): 185-188. | |
46 | Yu Y K. Study on safety of seven herbicides to water direct-seeding rice. Harbin: Northeast Agricultural University, 2017. |
郁延坤. 7种除草剂对水直播水稻安全性影响的研究. 哈尔滨: 东北农业大学, 2017. | |
47 | Guo M J, Shen J, Song X E, et al. Comprehensive evaluation of fluroxypyr herbicide on physiological parameters of spring hybrid millet. PeerJ, 2019, 7(1): e7794. |
48 | Tan W, Li Q L, Zhai H. Photosynthesis and growth responses of grapevine to acetochlor and fluoroglycofen. Pesticide Biochemistry and Physiology, 2012, 103(3): 210-218. |
49 | Shen L Y. Effect of glyphosate on physiology and growth of Vallisneria natans. Shanghai: Shanghai Ocean University, 2021. |
沈路遥. 草甘膦对苦草生理生长的影响. 上海: 上海海洋大学, 2021. | |
50 | Yin X L. Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. Nanjing: Nanjing Agricultural University, 2008. |
尹小乐. 除草剂异丙隆对小麦生物毒性的影响. 南京: 南京农业大学, 2008. |
[1] | Li-miao ZHANG, Xue TAN, Zhi DONG, Jie ZHENG, Zhong-xun YUAN, Chang-xiao LI. Effects of Alternanthera philoxeroides invasion on plant diversity in the riparian zones of downtown Chongqing in the Three Gorges Reservoir area [J]. Acta Prataculturae Sinica, 2022, 31(9): 13-25. |
[2] | DONG Wen-ke, Chen Chun-yan, MA Hui-ling. Analysis of insect resistance and herbicide resistance in transgenic alfalfa plants over-expressing the OvBAN/bar gene [J]. Acta Prataculturae Sinica, 2019, 28(7): 159-167. |
[3] | BAO Gen-sheng, WANG Yu-qin, SONG Mei-ling, WANG Hong-sheng, YIN Ya-li, LIU Sheng-cai, YANG You-wu, YANG Ming. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S. chamaejasme invasion [J]. Acta Prataculturae Sinica, 2019, 28(3): 51-61. |
[4] | SUO Ya-fei, DU Chao, LI Ning-ning, WANG Yan, WANG Ying-chun. Cloning and function analysis of RtSOD gene in the rare recretohalophyte Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2018, 27(4): 98-110. |
[5] | GAO Xing-Xiang, SUN Zuo-Wen, LI Mei, FANG Feng, LI Jian, WU Jia-Jun, LEE Mao-Sheng. The effect of herbicide application timing and dosage on control of Alopecurus myosuroides in winter wheat [J]. Acta Prataculturae Sinica, 2016, 25(8): 172-179. |
[6] | LI Jian, LI Yan, GAO Xing-Xiang, FANG Feng, LI Mei. The biological characteristics of Digitaria sanguinalis pathogen Fusarium chlamydosporum strain ZC201301 [J]. Acta Prataculturae Sinica, 2016, 25(3): 234-239. |
[7] | SONG Xu-Dong, ZHAO Gui-Qin, CHAI Ji-Kuan. Effects of different herbicides on weed control, grain yield and hull rate in naked oats [J]. Acta Prataculturae Sinica, 2016, 25(1): 171-178. |
[8] | LIU Huan, MU Ping, ZHAO Guiqin, ZHOU Xiangrui. The impact of herbicides on production and antioxidant properties of oats [J]. Acta Prataculturae Sinica, 2015, 24(2): 41-48. |
[9] | JIA Xiao-Xia, QI En-Fang, MA Sheng, HU Xin-Yuan, WANG Yi-Hang, WEN Guo-Hong, GONG Cheng-Wen, LI Jian-Wu. Analysis of drought tolerance and herbicide resistance in transgenic potato plants over-expressing DREB1A/Bar [J]. Acta Prataculturae Sinica, 2015, 24(11): 58-64. |
[10] | MA Guo-lan,BAI Lian-yang,LIU Du-cai,LIU Xue-yuan,TANG Tao,PENG Ya-jun. Control of herbicide resistant Echinochloacrusgalli indirect-seeded rice crops [J]. Acta Prataculturae Sinica, 2014, 23(6): 259-265. |
[11] | GAO Xing-xiang,LI Mei,FANG Feng,ZHANG Yue-li,QI Jun-shan. Biological activities of eight herbicides against four grass weeds of wheat fields [J]. Acta Prataculturae Sinica, 2014, 23(6): 349-354. |
[12] | ZHANG Zhi-zhong, SHI Qiu-xiang, SUN Zhi-hao, LAN Mao-feng. Allelopathy of the invasive plant Alternanthera philoxeroides to radish and lettuce [J]. Acta Prataculturae Sinica, 2013, 22(1): 288-293. |
[13] | YE Liang-tao, QIAN Jia-zhong, ZUO Sheng-peng, LI Shu-ping, CHEN Ya-qiong. Effect of trophic status of cultivation solutions on allelopathic inhibition of Microcystis aeruginosa by Alternanthera philoxeroides [J]. Acta Prataculturae Sinica, 2012, 21(1): 279-284. |
[14] | YOU Ming-hong, LIU Jin-ping, BAI Shi-qie, ZHANG Xin-quan, BIAN Zhi-gao. Effects of mixed application of fertilizers and herbicides on production performance of Elymus sibiricus [J]. Acta Prataculturae Sinica, 2010, 19(5): 283-286. |
[15] | ZHANG Zhen, XU Li, ZHU Xiao-min. Effect on species diversity of plant communities caused by invasion of Alternanthera philoxeroides in different habitats [J]. Acta Prataculturae Sinica, 2010, 19(4): 10-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||