[1] Boyer J S.Plant productivity and environment. Science, 1982, 218: 443-448. [2] Das S K, Patra J K, Thatoi H.Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. International Review of Hydrobiology, 2016, 101(1/2): 3-19. [3] Potters G, Horemans N, Jansen M A.The cellular redox state in plant stress biology-A charging concept. Plant Physiology & Biochemistry, 2010, 48(5): 292-300. [4] Alscher R G, Erturk N, Heath L S.Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 2002, 53: 1331-1341. [5] Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxideas signalling molecules in plants. Journal of Experimental Botany, 2002, 53: 1237-1247. [6] Bowler C, Montagu M V, Inze D.Superoxide dismutase and stress tolerance. Annual Review of Plant Biology, 2003, 43(1): 83-116. [7] Van C W, Capiau K, Van M M, et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiology, 1996, 112(4): 1703-1714. [8] McKersie B D, Chen Y. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiology, 1993, 103(4): 1155-1163. [9] Feng W, Wang H, Bing L, et al. Cloning and characterization of a novel splicing isoform of the iron-superoxide dismutase gene in rice (Oryza sativa L.). Plant Cell Reports, 2006, 24(12): 734-742. [10] Wang M, Xin Z, Zhen X, et al. A wheat superoxide dismutase gene TaSOD2, enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Molecular Biology, 2016, 91(1/2): 1-16. [11] Pitcher L H, Zilinskas B A.Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiology, 1996, 110(2): 583-588. [12] Feng K, Yu J, Cheng Y, et al. The SOD gene family in tomato: identification, phylogenetic relationships, and expression patterns. Frontiers in Plant Science, 2016, 7(131): 1279. [13] Hu G H, Yu S X, Fan S L, et al. Cloning and expression of the chloroplast copper/zinc-superoxide dismutase gene in upland cotton (Gossypium hirsutum L.). Journal of Plant Physiology and Molecular Biology, 2007, 33(33): 197-204. [14] Li K, Pang C H, Ding F, et al. Overexpression of Suaeda salsa, stroma ascorbate peroxidase in Arabidopsis, chloroplasts enhances salt tolerance of plants. South African Journal of Botany, 2012, 78(1/2): 235-245. [15] Yang Y L, Shi R X, Wei X L, et al. Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 102(3): 387-395. [16] Zhao Y Z.Vascular plants of plateau ordos. Hohhot: Inner Mongolia University Press, 2006: 47. 赵一之. 鄂尔多斯高原维管植物. 呼和浩特: 内蒙古大学出版社, 2006: 47. [17] Ma Y Q.Inner Mongolia flora (Volume 3). Hohhot: Inner Mongolia People’s Publishing House, 1989: 519-522. 马疏泉. 内蒙古植物志(第三卷).呼和浩特: 内蒙古人民出版社, 1989: 519-522. [18] Yang C, Wang Y C, Liu Q, et al.Conservation biology of Tetraena mongolica Maxim. Beijing: Science Press, 2002. 杨持, 王迎春, 刘强, 等. 四合木保护生物学. 北京: 科学出版社, 2002. [19] Xue Y, Wang Y C, Wang T Z.Physiological and biochemical mechanisms of an endemic halophyte Reaumuria trigyna Maxim under salt stress.Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1): 136-142. 薛焱, 王迎春, 王同智. 濒危植物长叶红砂适应盐胁迫的生理生化机制研究. 西北植物学报, 2012, 32(1): 136-142. [20] Xue Y, Wang Y C.Study on characters of ions secretion from Reaumuria trigyna. Journal of Desert Research, 2008, 28(3): 437-442. 薛焱, 王迎春. 盐生植物长叶红砂泌盐特性的研究.中国沙漠, 2008, 28(3): 437-442. [21] Xue Y, Wang Y C.Influence of light, temperature and salinity on seed germination of Reaumuria trigyna Maxim. Plant Physiology Communications, 2007, 43(4): 708-710. 薛焱, 王迎春. 光照, 温度和盐分对长叶红沙种子萌发的影响. 植物生理学通讯, 2007, 43(4): 708-710. [22] Dang Z H, Zheng L L, Feng Z, et al. Cloning and sequence analysis of the plasma membrane Na+/H+ antiporter cDNA in recretohalophyte Reaumuria trigyna Maxim. Acta Agriculturae Boreali-Sinica, 2013, 28(3): 1-6. 党振华, 郑琳琳, 冯智, 等. 泌盐植物长叶红砂质膜Na+/H+逆向转运蛋白基因(RtSOS1)全长cDNA 的克隆及序列分析. 华北农学报, 2013, 28(3): 1-6. [23] Dang Z H, Zheng L L,Wang Y C, et al.Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics, 2013, 14(1): 29. [24] Dang Z H, Qi Q, Zhang H R, et al. Identification of salt-stress-induced genes from the RNA-Seq data of Reaumuria trigyna using differential-display reverse transcription PCR. International Journal of Genomics, 2014, 2014: 1-16. [25] Wang J, Zheng L L, Gu T P, et al. Cloning and expression analysis of two WRKY transcription factors from the rare recretohalophyte Reaumuria trigyna. Acta Prataculturae Sinica, 2014, 23(4): 122-129. 王佳, 郑琳琳, 顾天培, 等. 珍稀泌盐植物长叶红砂两个WRKY转录因子的克隆及表达分析. 草业学报, 2014, 23(4): 122-129. [26] Xue Y, Wang Y C, Wang T Z.Responses of antioxidant system of an endemic halophyte Reaumuria trigyna to NaCl stress. Journal of Desert Research, 2012, 32(6): 1659-1673. 薛焱, 王迎春, 王同智. 盐胁迫对濒危植物长叶红砂抗氧化系统的影响. 中国沙漠, 2012, 32(6): 1659-1673. [27] Dang Z H.Transcmptomic study of the salt-stress response in the revretohalophyte Reaumuria trigyna native to alxadesert. Huhhot: Inner Mongolia University, 2013. 党振华. 阿拉善荒漠区珍稀泌盐植物长叶红砂响应盐胁迫的转录组学研究. 呼和浩特: 内蒙古大学, 2013. [28] Zhang H R.Analysis the function of key genes in flavonoid biosynthetic pathway and the pathway in response to abiotic stresses in Reaumuria trigyna. Huhhot: Inner Mongolia University, 2016. 张慧荣. 长叶红砂黄酮类化合物合成相关基因功能分析及其对逆境胁迫的响应. 呼和浩特: 内蒙古大学, 2016. [29] Li A H, Na B K, Ahn S K, et al. Functional expression and characterization of a cytosolic copper/zinc-superoxide dismutase of Spirometra erinacei. Parasitology Research, 2010, 106(3): 627-635. [30] Morita S, Tsukamoto S, Sakamoto A.Differences in intron-mediated enhancement of gene expression by the first intron of cytosolic superoxide dismutase gene from rice in monocot and dicot plants. Plant Biotechnology, 2012, 29(1): 115-119. [31] Abu S.Isolation and expression analysis of chloroplastic copper/zinc superoxide dismutase gene in barley. South African Journal of Botany, 2011, 77(2): 328-334. [32] Gómez J M, Jiménez A, Olmos E, et al. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. Journal of Experimental Botany, 2004, 55: 119-130. [33] Hernández-Nistal J, Dopico B, Labrador E.Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Science, 2002, 163(3): 507-514. [34] Guan L, Scandalios J G.Two strucrally similar maize cytosolic superoxide dismutase genes, SodA and Sod4A, respond differently to abscisic acid and high osmoticun.Plant Physiology, 1998, 117(1): 217-224. [35] Youngpyo L, Ahmad R, Haengsoon L, et al. Improved tolerance of Cu/Zn superoxide dismutase and ascorbate peroxidase expressing transgenic tobacco seeds and seedlings against multiple abiotic stresses. International Journal of Agriculture & Biology, 2013, 15(4): 725-730. [36] Negi N P, Shrivastava D C, Sharna V, et al. Overexpression of Cu/Zn SOD from Arachis hypogaea alleviates salinity and drought stress in tobacco.Plant Cell Reports, 2015, 34(7): 1109-1126. [37] Du Y Y, Wang P C, Chen J, et al. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. Acta Botanica Sinica, 2008, 50(10): 1318-1326. [38] Tuteja N.Mechanisms of high salinity tolerance in plants.Methods in Enzymology, 2007, 428: 419. [39] Feki K, Brini F, Amar S B, et al. Comparative functional analysis of two wheat Na+/H+, antiporter SOS1, promoters in Arabidopsis thaliana, under various stress conditions. Journal of Applied Genetics, 2015, 56(1): 15-26. |