Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (6): 105-115.DOI: 10.11686/cyxb2023260
Zhao-ben QI1(), Xiao-yan REN1, Yi-tong LI1, Jin-yun MA2, Quan LIU1()
Received:
2023-07-25
Revised:
2023-09-11
Online:
2024-06-20
Published:
2024-03-20
Contact:
Quan LIU
Zhao-ben QI, Xiao-yan REN, Yi-tong LI, Jin-yun MA, Quan LIU. Enzyme extraction method and antioxidant activity of polysaccharides from red clover[J]. Acta Prataculturae Sinica, 2024, 33(6): 105-115.
水平 Levels | A | B | C | D |
---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | |
1 | 80 | 0.7 | 50 | 3∶1∶1 |
2 | 90 | 0.9 | 60 | 7∶2∶2 |
3 | 100 | 1.0 | 65 | 4∶1∶1 |
Table 1 Orthogonal test factor level design
水平 Levels | A | B | C | D |
---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | |
1 | 80 | 0.7 | 50 | 3∶1∶1 |
2 | 90 | 0.9 | 60 | 7∶2∶2 |
3 | 100 | 1.0 | 65 | 4∶1∶1 |
序号 Serial number | A | B | C | D | 多糖含量 Polysaccharides content (%) |
---|---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | ||
1 | 1 | 1 | 1 | 1 | 6.79 |
2 | 1 | 2 | 2 | 3 | 8.83 |
3 | 1 | 3 | 3 | 2 | 6.25 |
4 | 2 | 1 | 2 | 2 | 8.33 |
5 | 2 | 2 | 3 | 1 | 5.84 |
6 | 2 | 3 | 1 | 3 | 8.42 |
7 | 3 | 1 | 3 | 3 | 3.96 |
8 | 3 | 2 | 1 | 2 | 7.24 |
9 | 3 | 3 | 2 | 1 | 8.22 |
K1 | 21.87 | 19.08 | 22.45 | 20.85 | — |
K2 | 22.59 | 21.91 | 25.38 | 21.82 | — |
K3 | 19.42 | 22.89 | 16.05 | 21.21 | — |
R | 3.17 | 3.81 | 9.33 | 0.97 | — |
Table 2 Results of orthogonal experiment on enzyme extraction method
序号 Serial number | A | B | C | D | 多糖含量 Polysaccharides content (%) |
---|---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | ||
1 | 1 | 1 | 1 | 1 | 6.79 |
2 | 1 | 2 | 2 | 3 | 8.83 |
3 | 1 | 3 | 3 | 2 | 6.25 |
4 | 2 | 1 | 2 | 2 | 8.33 |
5 | 2 | 2 | 3 | 1 | 5.84 |
6 | 2 | 3 | 1 | 3 | 8.42 |
7 | 3 | 1 | 3 | 3 | 3.96 |
8 | 3 | 2 | 1 | 2 | 7.24 |
9 | 3 | 3 | 2 | 1 | 8.22 |
K1 | 21.87 | 19.08 | 22.45 | 20.85 | — |
K2 | 22.59 | 21.91 | 25.38 | 21.82 | — |
K3 | 19.42 | 22.89 | 16.05 | 21.21 | — |
R | 3.17 | 3.81 | 9.33 | 0.97 | — |
因素 Factors | 离差平方和 Sum of squares of deviations | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 显著性 Significance |
---|---|---|---|---|---|
A | 5.553 | 2 | 2.777 | 29.500 | P<0.01 |
B | 7.819 | 2 | 3.910 | 41.540 | P<0.01 |
C | 45.545 | 2 | 22.773 | 241.940 | P<0.01 |
D | 0.474 | 2 | 0.237 | 2.520 | P>0.05 |
Table 3 Results of variance analysis of orthogonal test for enzyme extraction method
因素 Factors | 离差平方和 Sum of squares of deviations | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 显著性 Significance |
---|---|---|---|---|---|
A | 5.553 | 2 | 2.777 | 29.500 | P<0.01 |
B | 7.819 | 2 | 3.910 | 41.540 | P<0.01 |
C | 45.545 | 2 | 22.773 | 241.940 | P<0.01 |
D | 0.474 | 2 | 0.237 | 2.520 | P>0.05 |
样品 Samples | 半抑制浓度Semi-inhibitory concentration (mg·mL-1) | |
---|---|---|
清除DPPH自由基 Scavenging DPPH free radical | 清除O2·-自由基 Scavenging superoxide anion free radical | |
酶提取多糖Enzyme extraction polysaccharides | 0.65±0.00a | 1.16±0.05b |
超声提取多糖Ultrasonic extraction polysaccharides | 0.48±0.01b | 0.92±0.01c |
热水提取多糖Hot water extraction polysaccharides | 0.46±0.01b | 0.95±0.01c |
抗坏血酸Vc | 0.02±0.00c | 2.01±0.02a |
Table 4 IC50 value of free radical scavenging activity of different extracted polysaccharide samples
样品 Samples | 半抑制浓度Semi-inhibitory concentration (mg·mL-1) | |
---|---|---|
清除DPPH自由基 Scavenging DPPH free radical | 清除O2·-自由基 Scavenging superoxide anion free radical | |
酶提取多糖Enzyme extraction polysaccharides | 0.65±0.00a | 1.16±0.05b |
超声提取多糖Ultrasonic extraction polysaccharides | 0.48±0.01b | 0.92±0.01c |
热水提取多糖Hot water extraction polysaccharides | 0.46±0.01b | 0.95±0.01c |
抗坏血酸Vc | 0.02±0.00c | 2.01±0.02a |
样品 Samples | 组分 Components | 重均分子量 Weight-average molecular weight (g·mol-1) | 数均分子量 Number-average molecular weight (g·mol-1) | 多分散系数 Polydispersity |
---|---|---|---|---|
酶提取多糖 Enzyme extraction polysaccharides | 1 | 1.66×105 | 1.23×105 | 1.35 |
2 | 7.21×104 | 7.19×104 | 1.00 | |
3 | 6.00×104 | 5.97×104 | 1.00 | |
4 | 1.57×104 | 1.50×104 | 1.05 | |
超声提取多糖 Ultrasonic extraction polysaccharides | 1 | 2.40×105 | 1.56×105 | 1.54 |
2 | 6.48×104 | 6.28×104 | 1.03 | |
3 | 8.89×103 | 8.64×103 | 1.03 | |
热水提取多糖 Hot water extraction polysaccharides | 1 | 1.82×105 | 1.49×105 | 1.22 |
2 | 9.06×104 | 9.03×104 | 1.00 | |
3 | 7.38×104 | 7.34×104 | 1.00 | |
4 | 1.87×104 | 1.79×104 | 1.04 |
Table 5 Molecular weight of red clover polysaccharide with different extraction methods
样品 Samples | 组分 Components | 重均分子量 Weight-average molecular weight (g·mol-1) | 数均分子量 Number-average molecular weight (g·mol-1) | 多分散系数 Polydispersity |
---|---|---|---|---|
酶提取多糖 Enzyme extraction polysaccharides | 1 | 1.66×105 | 1.23×105 | 1.35 |
2 | 7.21×104 | 7.19×104 | 1.00 | |
3 | 6.00×104 | 5.97×104 | 1.00 | |
4 | 1.57×104 | 1.50×104 | 1.05 | |
超声提取多糖 Ultrasonic extraction polysaccharides | 1 | 2.40×105 | 1.56×105 | 1.54 |
2 | 6.48×104 | 6.28×104 | 1.03 | |
3 | 8.89×103 | 8.64×103 | 1.03 | |
热水提取多糖 Hot water extraction polysaccharides | 1 | 1.82×105 | 1.49×105 | 1.22 |
2 | 9.06×104 | 9.03×104 | 1.00 | |
3 | 7.38×104 | 7.34×104 | 1.00 | |
4 | 1.87×104 | 1.79×104 | 1.04 |
提取方法 Extraction methods | 单糖组成 Monosaccharide composition (摩尔百分比mol%) | |||||||
---|---|---|---|---|---|---|---|---|
甘露糖Man | 鼠李糖Rha | 葡萄糖醛酸GluA | 半乳糖醛酸GalA | 葡萄糖 Glu | 半乳糖 Gal | 木糖 Xyl | 阿拉伯糖Ara | |
酶提取Enzyme extraction | 5.09 | 6.57 | 3.31 | 5.05 | 28.55 | 27.28 | 5.84 | 18.31 |
超声提取Ultrasonic extraction | 5.44 | 6.62 | 3.45 | 3.69 | 20.92 | 30.81 | 6.12 | 22.95 |
热水提取Hot water extraction | 4.93 | 7.59 | 4.02 | 6.35 | 17.86 | 32.95 | 6.00 | 20.29 |
Table 6 Monosaccharide composition of red clover polysaccharides with different extraction methods
提取方法 Extraction methods | 单糖组成 Monosaccharide composition (摩尔百分比mol%) | |||||||
---|---|---|---|---|---|---|---|---|
甘露糖Man | 鼠李糖Rha | 葡萄糖醛酸GluA | 半乳糖醛酸GalA | 葡萄糖 Glu | 半乳糖 Gal | 木糖 Xyl | 阿拉伯糖Ara | |
酶提取Enzyme extraction | 5.09 | 6.57 | 3.31 | 5.05 | 28.55 | 27.28 | 5.84 | 18.31 |
超声提取Ultrasonic extraction | 5.44 | 6.62 | 3.45 | 3.69 | 20.92 | 30.81 | 6.12 | 22.95 |
热水提取Hot water extraction | 4.93 | 7.59 | 4.02 | 6.35 | 17.86 | 32.95 | 6.00 | 20.29 |
1 | Zhong K, Zeng Z H, Lin W J, et al. Study on the preparation of polysaccharides from mung bean seed and anti-oxidant activity. Journal of the Chinese Cereals and Oils Association, 2013, 28(2): 93-98. |
钟葵, 曾志红, 林伟静, 等. 绿豆多糖制备及抗氧化特性研究. 中国粮油学报, 2013, 28(2): 93-98. | |
2 | Chen F J, Li D H, Shen H Q, et al. Polysaccharides from Trichosanthes fructus via ultrasound-assisted enzymatic extraction using response surface methodology. BioMed Research International, 2017(25): 1-13. |
3 | Kagan I A, Anderson M L, Kramer K J, et al. Seasonal and diurnal variation in water-soluble carbohydrate concentrations of repeatedly defoliated red and white clovers in central kentucky. Journal of Equine Veterinary Science, 2020, 84(1): 102858. |
4 | Su C, Chen Y T, Tian S J, et al. Research progress on emerging polysaccharide materials applied in tissue engineering. Polymers, 2022, 14(16): 3268. |
5 | Shang H M, Li R, Wu H X, et al. Polysaccharides from Trifolium repens L. extracted by different methods and extraction condition optimization. Scientific Reports, 2019, 9(1): 6353. |
6 | Yu S, Deng X, Chen S Y, et al. Extraction technology of polysaccharide from Foshou yam by enzymatic hydrolysis of cellulase. The Food Industry, 2020, 41(9): 60-63. |
喻随, 邓霞, 陈思颖, 等. 纤维素酶法提取佛手山药多糖的工艺. 食品工业, 2020, 41(9): 60-63. | |
7 | Wang Y X. Extraction and antioxidant activity of polysaccharides from Notopterygium incisum leaves. Ya’an: Sichuan Agricultural University, 2022. |
王玉霞. 羌活叶多糖的提取及抗氧化活性研究. 雅安: 四川农业大学, 2022. | |
8 | Nadar S S, Rao P, Rathod V K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 2018, 108(3): 309-330. |
9 | Li Y, Huang D C, Chen G T, et al. Polysaccharides from Laminaria japonica: optimization of different extraction processes and comparison of physicochemical properties and antitumor activity. Food Science, 2019, 40(6): 288-294. |
李莹, 黄德春, 陈贵堂, 等. 昆布多糖不同提取工艺优化及其理化性质和抗肿瘤活性比较. 食品科学, 2019, 40(6): 288-294. | |
10 | Deng G L. Effect of extraction methods on the yield and antioxidant activity of polysaccharide from pumpkin. Cereals & Oils, 2017, 30(9): 98-100. |
邓桂兰. 不同提取方法对南瓜多糖提取率及抗氧化活性的影响. 粮食与油脂, 2017, 30(9): 98-100. | |
11 | Wang Q, Li D D, Pan Y Y, et al. Effect of different extraction methods on the extraction ratio and antioxidant activity of polysaccharides from Gastrodia elata Bi. Food & Machinery, 2017, 33(9): 146-150. |
王庆, 李丹丹, 潘芸芸, 等. 提取方法对天麻多糖提取率及其抗氧化活性的影响. 食品与机械, 2017, 33(9): 146-150. | |
12 | Duan Z W, He A, Xie H, et al. Optimization of different extraction process and antioxidant activity of polysaccharides from Morinda officinalis How. Food Science and Technology, 2019, 44(6): 207-214. |
段宙位, 何艾, 谢辉, 等. 巴戟天多糖不同提取工艺优化及抗氧化性比较. 食品科技, 2019, 44(6): 207-214. | |
13 | Liu S S, Liu Y Q, Zhang Q, et al. Optimization of synergistic enzymatic hydrolysis of polysaccharide extraction from dandelion root and study on its antioxidant activity. Journal of Food Science and Technology, 2019, 37(6): 108-115. |
刘珊珊, 刘亚琼, 张琦, 等. 双酶提取蒲公英根多糖工艺优化及其抗氧化性研究. 食品科学技术学报, 2019, 37(6): 108-115. | |
14 | Chen H, Shi X Q, Cen L Y, et al. Effect of yeast fermentation on the physicochemical properties and bioactivities of polysaccharides of Dendrobium officinale. Foods, 2022, 12(1): 150. |
15 | Li B H, Huang G L. Preparation, structure-function relationship and application of Grifola umbellate polysaccharides. Industrial Crops and Products, 2022, 186(1): 115282. |
16 | He L, Yan X T, Liang J, et al. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohydrate Polymers, 2018, 198(20): 101-108. |
17 | Li S J, Xiong Q P, Lai X P, et al. Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(2): 237-250. |
18 | Zhang N, Chen H X, Ma L S, et al. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. International Journal of Biological Macromolecules, 2013, 54(1): 209-215. |
19 | Zhang H S, Gao Q, Zhang T T, et al. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense). Acta Prataculturae Sinica, 2021, 30(12): 117-128. |
张鹤山, 高秋, 张婷婷, 等. 30份红三叶种质资源耐铜性综合评价. 草业学报, 2021, 30(12): 117-128. | |
20 | Zhang H X, Zhao J C, Shang H M, et al. Extraction, purification, hypoglycemic and antioxidant activities of red clover (Trifolium pratense L.) polysaccharides. International Journal of Biological Macromolecules, 2020, 148(1): 750-760. |
21 | Li Z Y, Zhang R, Zhang J, et al. Effect of compound microbial fertilizer on the root growth of Trifolium pratense L.cv. Minshan by partly replacing chemical fertilizer. China Herbivore Science, 2018, 38(1): 38-42. |
李智燕, 张榕, 张洁, 等. 微生物专用菌肥与化肥配施对红三叶根系生长的影响.中国草食动物科学, 2018, 38(1): 38-42. | |
22 | Shi W J. The study on antioxidant activities of polysaccharide and flavonoid in Apocynum venetum L. and Trifolium pratense L. Lanzhou: Lanzhou University, 2020. |
史文娟. 罗布麻和红三叶中多糖与黄酮的抗氧化活性研究. 兰州: 兰州大学, 2020. | |
23 | Mishra K, Ojha H, Chaudhury N K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 2012, 130(4): 1036-1043. |
24 | Vlaisavljević S,Kaurinović B,Popović M,et al. Profile of phenolic compounds in Trifolium pratense L. extracts at different growth stages and their biological activities. International Journal of Food Properties, 2017, 20(9/10/11/12): 3090-3101. |
25 | Chen S R, Li H C, Liao S Y, et al. Studies on anti-oxidation of polysaccharides from eight Dendrobium species. Pharmacy Today, 2022, 32(5): 346-352. |
陈舜让, 李海春, 廖思艺, 等. 8种石斛多糖特征及非细胞抗氧化活性比较. 今日药学, 2022, 32(5): 346-352. | |
26 | Huang Y C, Chen X X, He L P, et al. Isolation, purification and molecular weight determination of polysaccharides from Cordyceps militaris. Modern Food Science and Technology, 2012, 28(8): 1054-1057. |
黄奕诚, 陈雪香, 贺丽苹, 等. 蛹虫草多糖的纯化及其分子量的测定. 现代食品科技, 2012, 28(8): 1054-1057. | |
27 | Qiu X. Extraction, isolation, purification and structural identification of polysaccharides from Acorus tatarinowii. Guangzhou: Guangdong Pharmaceutical University, 2021. |
丘娴. 石菖蒲多糖的提取、分离纯化和结构鉴定. 广州: 广东药科大学, 2021. | |
28 | Xu Z, Wang H D, Wang B L, et al. Characterization and antioxidant activities of polysaccharides from the leaves of Lilium lancifolium Thunb. International Journal of Biological Macromolecules, 2016, 92(1): 148-155. |
29 | Ren D Y, Lin D H, Alim A, et al. Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-κB signaling pathways in RAW264.7 cells. Food & Function, 2017, 8(3): 1299-1312. |
30 | Ahmad M M, Chatha S A S, Iqbal Y, et al. Recent trends in extraction, purification, and antioxidant activity evaluation of plant leaf-extract polysaccharides. Biofuels, Bioproducts and Biorefining, 2022, 16(6): 1820-1848. |
31 | Huang G L, Chen F, Yang W J, et al. Preparation, deproteinization and comparison of bioactive polysaccharides. Trends in Food Science and Technology, 2021, 109(7): 564-568. |
32 | Zhao Z Q, Wang M, Zhang Z Q. Research progress of antioxidation efficacy and extraction of plant polysaccharide. Science and Technology of Food Industry, 2018, 39(13): 337-342. |
赵芷芊, 王敏, 张志清. 植物多糖的提取及抗氧化功效的研究进展. 食品工业科技, 2018, 39(13): 337-342. | |
33 | Yin Y, Gao W H, Yu S J. Progress in the research of polysaccharide extraction. Science and Technology of Food Industry, 2007, 190(2): 248-250. |
尹艳, 高文宏, 于淑娟. 多糖提取技术的研究进展. 食品工业科技, 2007, 190(2): 248-250. | |
34 | Guo Y H, Zhang L J, Cao L L, et al. Recent advances in analytical techniques for monosaccharide composition of plant polysaccharides. Food Science, 2018, 39(1): 326-332. |
郭元亨, 张利军, 曹丽丽, 等. 植物多糖中单糖组成分析技术的研究进展. 食品科学, 2018, 39(1): 326-332. | |
35 | Zhu Z Y, Pang W, Li Y Y, et al. Effect of ultrasonic treatment on structure and antitumor activity of mycelial polysaccharides from Cordyceps gunnii. Carbohydrate Polymers, 2014, 114(1): 12-20. |
36 | Xiong H W, Dai S H, Min H, et al. The monosaccharides components of soybean and wheat bran fiber determined by gas chromatography. Food Research and Development, 2014, 35(2): 84-86. |
熊慧薇, 戴书浩, 闵华, 等. GC分析大豆和麦麸膳食纤维中的单糖成分. 食品研究与开发, 2014, 35(2): 84-86. | |
37 | Ni L J, Wang Y Y, He W Y, et al. Monosaccharide composition, activity and their correlation analysis in eight polysaccharides. Journal of Tianjin University (Science and Technology), 2014, 47(4): 326-330. |
倪力军, 王媛媛, 何婉瑛, 等. 8种多糖的单糖组成、活性及其相关性分析. 天津大学学报 (自然科学与工程技术版), 2014, 47(4): 326-330. | |
38 | Liu D Q, Ren F Z, Hou C Y. Comparative studies on the hypoglycemic activity of several plant polysaccharides. Journal of Chinese Institute of Food Science and Technology, 2021, 21(1): 81-89. |
刘丹奇, 任发政, 侯彩云. 几种植物多糖降血糖活性的对比研究. 中国食品学报, 2021, 21(1): 81-89. | |
39 | Gu D L, Wang Q, Zan K, et al. Comparison of different extraction methods for polysaccharides from Polygoni multiflori Radix. Chinese Journal of New Drugs, 2023, 32(1): 51-56. |
辜冬琳, 汪祺, 昝珂, 等. 何首乌多糖提取方法的比较研究. 中国新药杂志, 2023, 32(1): 51-56. | |
40 | Chen R Z, Li S Z, Liu C M, et al. Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from Epimedium leaves. Process Biochemistry, 2012, 47(12): 2040-2050. |
41 | Kang Q Z, Chen S S, Li S F, et al. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules, 2019, 124(1): 1137-1144. |
[1] | Yong-gang CHEN, Wen-juan KANG, Fang WU, Yun A, Shang-li SHI, Cui-mei ZHANG, Zi-li LI. Boron promotes secretion of extracellular polysaccharides and indole-3-acetic acid by Rhizobium [J]. Acta Prataculturae Sinica, 2021, 30(5): 42-51. |
[2] | He-shan ZHANG, Qiu GAO, Ting-ting ZHANG, Jiao-yun LU, Hong TIAN, Jun-bo XIONG, Yang LIU. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense) [J]. Acta Prataculturae Sinica, 2021, 30(12): 117-128. |
[3] | PU Xiao-jian, TIAN Jiu-sheng, TIAN Xin-hui, DU Wen-hua. Construction of the AFLP linkage map and QTL analysis of powdery mildew resistance in red clover [J]. Acta Prataculturae Sinica, 2018, 27(4): 79-88. |
[4] | ZHANG Chun-Gang, SU Xiao-Shuang, LIU Guang-Lei, WU Tian-You, ZHAN Jin-Shun, ZHAO Guo-Qi. Effects of feeding compound herbal additives on immunity status and lactation performance in Holstein cows [J]. Acta Prataculturae Sinica, 2017, 26(11): 104-112. |
[5] | MENG Li-Juan, ZHAO Gui-Qin. Evaluation of the adaptability of imported red clover germplasm in central Gansu [J]. Acta Prataculturae Sinica, 2015, 24(9): 30-42. |
[6] | JIANG Yi-bao, YANG Yu-rong, FENG Chang-song, WANG Cheng-zhang, CUI Guo-wen. Effects of red clover isoflavones on ascites syndrome incidence and antioxidant activity of broiler induced by cold exposure [J]. Acta Prataculturae Sinica, 2013, 22(2): 94-99. |
[7] | YU Lian-ping, HAO Zheng-li, LI Fa-di, MENG Xiang-jun, CHEN Xing-rong, LI Xin-yuan. Effect of isoflavone in red clover on the growth and immune functions, and in the antioxidant indices in ovariectomized rats [J]. Acta Prataculturae Sinica, 2012, 21(6): 137-144. |
[8] | HE Quan-lei, MIAO Fang, LI Chun-ling. Antioxidant activities in vitro of different polar solvent extracts of Asarum himalaicum [J]. Acta Prataculturae Sinica, 2012, 21(5): 285-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||