草业学报 ›› 2014, Vol. 23 ›› Issue (1): 177-184.DOI: 10.11686/cyxb20140121
樊文娜,孙晓格,倪俊霞,杜红旗,史莹华,严学兵,王成章*
收稿日期:
2013-02-22
出版日期:
2014-02-20
发布日期:
2014-02-20
通讯作者:
E-mail:wangchengzhang@263.net
作者简介:
樊文娜(1981-),女,河南许昌人,在读博士。E-mail:chou0516@163.com
基金资助:
FAN Wen-na,SUN Xiao-ge,NI Jun-xia,DU Hong-qi,SHI Ying-hua,YAN Xue-bing,WANG Cheng-zhang
Received:
2013-02-22
Online:
2014-02-20
Published:
2014-02-20
摘要: 本试验研究了不同光周期对3种秋眠型苜蓿光敏色素和植物体内源激素含量的影响,为揭示苜蓿秋眠性的调控机理提供科学依据。试验采用FQ-PCR SYBR-Green I方法,在人工气候室,以美国苜蓿秋眠级标准对照品种 Norseman(FD1, 秋眠型苜蓿,秋眠1级)、Dupuils(FD5,半秋眠型苜蓿,秋眠5级)和CUF101(FD9,非秋眠型苜蓿,秋眠9级)为材料, 设计4个不同的日照长度梯度(7,10,13和16 h/d),对其植株处理35 d,测定叶片中光敏色素(PHYA、PHYB)mRNA表达量,采用 (ELISA)试剂盒法测定内源激素生长素(IAA)、脱落酸(ABA)、玉米素核苷(ZR)、赤霉酸(GA3)的含量。结果表明,3种不同秋眠型紫花苜蓿PHYA和PHYB在短日照条件下合成量大,其中以Norseman表现最为明显。不同秋眠类型苜蓿叶片中的GA3/ABA、ZR/ABA和IAA/ABA均随着光照时间延长而增大;短日照条件下3种秋眠型苜蓿ABA的合成量均为最大,GA3的含量最低,生长严重受到抑制。可能PHYA和PHYB直接或间接影响了内源激素GA3、ZR、IAA、ABA合成量,进而调控了苜蓿的秋眠。
中图分类号:
樊文娜,孙晓格,倪俊霞,杜红旗,史莹华,严学兵,王成章. 光周期对不同秋眠型苜蓿光敏色素和内源激素的影响[J]. 草业学报, 2014, 23(1): 177-184.
FAN Wen-na,SUN Xiao-ge,NI Jun-xia,DU Hong-qi,SHI Ying-hua,YAN Xue-bing,WANG Cheng-zhang. Effect of photoperiod on phytochromes and endogenous hormones of alfalfa with different fall-dormancies[J]. Acta Prataculturae Sinica, 2014, 23(1): 177-184.
Reference:[1]Li P, Yang L L, Chen Q X, et al. Two strategies of cloning Medicago sativa phytochrome A and B genes[J]. Acta Prataculturae Sinica, 2011, 20(6): 85-92. [2]Li X L, Wan L Q. Alfalfa fall dormancy and its relationship to winter hardiness and yield[J]. Acta Prataculturae Sinica, 2004, 13(3): 57-61. [3]Hih S C, Jung G A, Shelton D C. Effects of temperature and photoperiod on metabolic changes in alfalfa in relation to cold hardiness[J]. Crop Science, 1967, 7: 385-389. [4]Barnes D K, Smith D M, Stucker R E, et al. Fall dormancy in alfalfa: A valuable predictive tool[A]. In: Barnes D K. Report of the 26th Alfalfa Improvement Conference[C]. Brookings. S D: South Dakota state University, 1979: 34. [5]Haagenson D M, Cunningham S M, Joern B C, et al. Autumn defoliation effects on alfalfa winter survival, root physiology, and gene expression[J]. Crop Science, 2003, 43: 1340-1348. [6]Cunningham S M, Gana J A, Volenec J J, et al. Winter hardiness, root physiology and gene expression in successive fall dormancy selections from ‘Mesilla’ and ‘CUF101’ alfalfa[J]. Crop Science, 2001, 41: 1091-1098. [7]Butler W L, Norris K H, Siegelman H W, et al. Detection assay and preliminary purification of the pigment controlling photorespensive development of plants[J]. Proceedings of the National Academy of Science, 1959, 58: 1703-1708. [8]Meng C. Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling[J]. Current Opinion in Plant Biology, 2008, 11(5): 503-508. [9]Franklin K A, Davis S J, Stoddart W M, et al. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis[J]. Plant Cell, 2003, 15(9): 1981-1989. [10]Wang C Z, Han J F, Hu X F, et al. Regulation of PhyB and ABA on falldormancy of different Medicago sativa varieties in photeriod treatments [J]. Acta Prataculturae Sinica, 2006, 15(6): 56-63. [11]Franklin K A, Whitelam G C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature genetics, 2007, 39: 1410-1413. [12]Halliday K J, Salter M G, Thingnaes E, et al. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT[J]. Plant Journal, 2003, 33: 875-885. [13]Smith D. Association of fall growth habit and winter survival in alfalfa[J]. Canadian Journal of Plant Science, 1961, 41: 244-251. [14]Benedict C, Geisler M, Trygg J, et al. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis[J]. Plant Physiology, 2006, 141: 1219-1232. [15]Fan W N, Wang C Z, Yan X B, et al. Extraction of actin gene from Medicago sativa[J]. Grassland and Turf, 2009, (1): 58-60. [16]Yang L L. Cloning of alfalfa phytochrome A gene using rapid amplification of cDNA ends[D]. Zhengzhou: Henan Agricultural University, 2008. [17]Li P. 6 kinds of thistles of alfalfa light receptor gene prediction and alfalfa phytochrome B, CRY1, CRY2, A gene cloning and analysis[D]. Zhengzhou: Henan Agricultural University, 2009. [18]Rossmanith P, Krassnig M, Wagner M, et al. Detection of Listeria monocytogenes in food using a combine denrichment/real-time PCR method targeting the prfA gene[J]. Research in Microbiology, 2006, 157: 763-771. [19]Alarcon B, Vicedo B, Aznar R. PCR- based procedures for detection and quantification of staphylococcus aureusand their application in food[J]. Journal of Applied Microbiology, 2006, 100: 352-364. [20]Hein I, Lehner A, Rieck P, et al. Comparison of different approaches to quantify staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese[J]. Applied and Environmental Microbiology, 2001, 67: 3122-3126. [21]Guilbaud M, Coppet P, Bourion F, et al. Quantitative detection of listeriamonocy to genes in biofilms by real-time PCR[J]. Applied and Environmental Microbiology, 2005, 71: 2190-2194. [22]Horvath D P, Anderson J V, Chao W S, et al. Knowing when to grow: signals regulating bud dormancy[J]. Trends in Plant Science, 2003, 8(11): 534-540. [23]Rohde A, Bhalerao R P. Plant dormancy in the perennial context[J]. Trends in Plant Science, 2007, 12(5): 217-223. [24]Chao W S, Foley M E, Horvath D P, et al. Signals regulating dormancy in vegetative buds[J]. International Journal of Plant Developmental Biology, 2007, 1(1): 49-56. [25]Dong J, Wang X M, Wang Z, et al. Cloning and analysis of dihydroflavonol rednctase (DFR) gene from Medicago sativa[J]. Acta Prataculturae Sinica, 2012, 21(2): 123-132. [26]Chen T T, Ynag Q C, Ding W, et al. Cloning and subcellular localization of a WRKY transcription factor gene of Medicago Sativa[J]. Acta Prataculturae Sinica, 2012, 21(4): 159-167. [27]Xu C B, Wang Y, Zhao H X, et al. A study on Agrobacterium tumefaciens-mediated transformation of Medicago sativa with the AtCBF1 gene[J]. Acta Prataculturae Sinica, 2012, 21(4): 168-174. [28]Chen T T, Yang Q C, Zhang X Q, et al. Bioinformatics and expression analyses of ethylene response factor genes in Medicago[J]. Acta Prataculturae Sinica, 2012, 21(6): 166-174. [29]Svendsen E, Wilen R, Stevenson R, et al. A molecular mark associated with low-temperature induction of dormancy in red osier dogwood(Cornus sericea)[J]. Tree Physiology, 2007, 27: 385-397. [30]Olsen J E, Junttila O, Nilsen J, et al. Ectopic expression of oat phytochrome A in hybrid aspen changes critical day length for growth and prevents cold acclimatization[J]. Plant Journal, 1997, 12(6): 1339-1350. [31]Wake C M F, Fennell A. Morphological, physiological and endo-dormancy responses of three Vitis genotypes to short photoperiod[J]. Biologia Plantarum, 2000, 109: 203-210. [32]Eriksson M. Low levels of phytochrome A expression alters circadian rhythm and change levels of FLOWERING LOCUS T leading to early bud set in hybrid aspen[J]. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 2007, 46: S231-S1231. [33]Quail P H. Phytochrome-regulated gene expression[J]. Integra Plant Biology, 2007, 49: 11-20. [34]Kuhn N, Ormeno N J, Jaque Z G, et al. Photoperiod modifies the diurnal expression profile of VvA and VvB transcripts in field-grown grapevine leaves[J]. Journal of Plant Physiology, 2009, 166(15): 1172-1180. [35]Horvath D P, Chao W S, Suttle J C, et al. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge(Euphorbia esula)[J]. BMC Genomics, 2008, 9: 536. [36]Duan C G, Liu H F, Li X L. Endogenous hormone regulation of deciduous fruit pavilions bud dormancy[J]. Hebei Fruits, 2005, (2): 27-40. [37]Khm^A. Seed dormancy and germination of physiological changes [M]. Wang C S, Hong T B, translation, Beijing: agriculture press, 1989: 52-59. [38]Tong Z,. Phytochrome and Photomorphogenesis [A] See: Yu S W. Plant Physiology and Molecular Biology (2nd edition) [M]. Beijing: Science Press, 1998: 633-653. [39]Tong Z, Zhao Y J, Wang T, et al. Photoreceptors and light-regulated development in plants[J] Journal of Integrative Plant Biology, 2000, 42: 111-115. [40]Franklin K A. Light and temperature signal crosstalk in plant development[J]. Science Direct, 2009, 12(1): 63-68. [41]Heschel M S, Selby J, Butler C, et al. A new role for phytochromes in temperature-dependent germination[J]. New Phytolist, 2007, 174: 735-741. [42]Horvath D. Common mechanisms regulate flowering and dormancy[J]. Plant Science, 2009, 177: 523-531. [43]Yuan J, Wu T L, Chen D. Effects of photoperiodic treatment on the endogenous hormones and dissociative amino acid of hyacinth bean leaves[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2004, 22(3): 215-226. [44]Han T F, Ma F M, Wang J L, et al. Photoperiodic effects on the amount and balance of endogenous hormones in soybean leaves[J]. Photoperiodic Effects on the Amount and Balance of Endogenous Hormones in Soybean Leaves, 1996, 22(6): 661-667. [45]Mazzella M A, Arana M V, Staneloni R J, et al. Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light[J]. Plant Cell, 2005, 17: 2507-2516. [46]Seo M, Hanada A, Kuwahara A, et al. Regulation of hormone metabolism in arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism[J]. Plant Journal, 2006, 48(3): 354-366.参考文献:[1]李平, 杨玲玲, 陈其新, 等. 两种策略分别克隆紫花苜蓿光敏色素A、B基因[J]. 草业学报, 2011, 20(6): 85-92. [2]李向林, 万里强. 苜蓿秋眠性及其与抗寒性和产量的关系[J]. 草业学报, 2004, 13(3): 57-61. [3]Hih S C, Jung G A, Shelton D C. Effects of temperature and photoperiod on metabolic changes in alfalfa in relation to cold hardiness[J]. Crop Science, 1967, 7: 385-389. [4]Barnes D K, Smith D M, Stucker R E,et al. Fall dormancy in alfalfa: A valuable predictive tool[A]. In: Barnes D K. Report of the 26th Alfalfa Improvement Conference[C]. Brookings. S D: South Dakota state University, 1979: 34. [5]Haagenson D M, Cunningham S M, Joern B C,et al. Autumn defoliation effects on alfalfa winter survival, root physiology, and gene expression[J]. Crop Science, 2003, 43: 1340-1348. [6]Cunningham S M, Gana J A, Volenec J J,et al. Winter hardiness, root physiology and gene expression in successive fall dormancy selections from ‘Mesilla’ and ‘CUF101’ alfalfa[J]. Crop Science, 2001, 41: 1091-1098. [7]Butler W L, Norris K H, Siegelman H W,et al. Detection assay and preliminary purification of the pigment controlling photorespensive development of plants[J]. Proceedings of the National Academy of Science, 1959, 58: 1703-1708. [8]Meng C. Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling[J]. Current Opinion in Plant Biology, 2008, 11(5): 503-508. [9]Franklin K A, Davis S J, Stoddart W M,et al. Mutant analyses define multiple roles for phytochrome C in Arabidopsisphotomorphogenesis[J]. Plant Cell, 2003, 15(9): 1981-1989. [10]王成章, 韩锦峰, 胡喜峰, 等. 不同光周期条件下光敏色素B和ABA对不同苜蓿品种的秋眠性调控[J]. 草业学报, 2006, 15(6): 56-63. [11]Franklin K A, Whitelam G C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature genetics, 2007, 39: 1410-1413. [12]Halliday K J, Salter M G, Thingnaes E,et al. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT[J]. Plant Journal, 2003, 33: 875-885. [13]Smith D. Association of fall growth habit and winter survival in alfalfa[J]. Canadian Journal of Plant Science, 1961, 41: 244-251. [14]Benedict C, Geisler M, Trygg J,et al. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis[J]. Plant Physiology, 2006, 141: 1219-1232. [15]樊文娜, 王成章, 严学兵, 等. 紫花苜蓿肌动蛋白基因的提取[J]. 草原与草坪, 2009, (1): 58-60. [16]杨玲玲. RACE法克隆紫花苜蓿光敏色素A基因[D]. 郑州: 河南农业大学, 2008. [17]李平. 6种蒺藜状苜蓿光受体基因的预测和紫花苜蓿光敏色素B、CRY1、CRY2、A基因的克隆与分析[D]. 郑州: 河南农业大学, 2009. [18]Rossmanith P, Krassnig M, Wagner M,et al. Detection of Listeria monocytogenes in food using a combine denrichment/real-time PCR method targeting the prfA gene[J]. Research in Microbiology, 2006, 157: 763-771. [19]Alarcon B, Vicedo B, Aznar R. PCR-based procedures for detection and quantification of staphylococcus aureusand their application in food[J]. Journal of Applied Microbiology, 2006, 100: 352-364. [20]Hein I, Lehner A, Rieck P,et al. Comparison of different approaches to quantify staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese[J]. Applied and Environmental Microbiology, 2001, 67: 3122-3126. [21]Guilbaud M, Coppet P, Bourion F,et al. Quantitative detection of listeriamonocy to genes in biofilms by real-time PCR[J]. Applied and Environmental Microbiology, 2005, 71: 2190-2194. [22]Horvath D P, Anderson J V, Chao W S,et al. Knowing when to grow: signals regulating bud dormancy[J]. Trends in Plant Science, 2003, 8(11): 534-540. [23]Rohde A, Bhalerao R P. Plant dormancy in the perennial context[J]. Trends in Plant Science, 2007, 12(5): 217-223. [24]Chao W S, Foley M E, Horvath D P,et al. Signals regulating dormancy in vegetative buds[J]. International Journal of Plant Developmental Biology, 2007, 1(1): 49-56. [25]董洁, 王学敏, 王赞, 等. 紫花苜蓿二氢黄酮醇还原酶基因(MsDFR)的克隆与分析[J]. 草业学报, 2012, 21(2): 123-132. [26]陈婷婷, 杨青川, 丁旺, 等. 紫花苜蓿WRK转录因子基因的克隆与亚细胞定位[J]. 草业学报, 2012, 21(4): 159-167. [27]徐春波, 王勇, 赵海霞, 等. 冷诱导转录因子At CBF1转化紫花苜蓿的研究[J]. 草业学报, 2012, 21(4): 168-174. [28]陈婷婷, 杨青川, 张新全, 等. 苜蓿乙烯应答因子基因的表达特性和生物信息学分析[J]. 草业学报, 2012, 21(6): 166-174. [29]Svendsen E, Wilen R, Stevenson R,et al. A molecular mark associated with low-temperature induction of dormancy in red osier dogwood(Cornus sericea)[J]. Tree Physiology, 2007, 27: 385-397. [30]Olsen J E, Junttila O, Nilsen J,et al. Ectopic expression of oat phytochrome A in hybrid aspen changes critical day length for growth and prevents cold acclimatization[J]. Plant Journal, 1997, 12(6): 1339-1350. [31]Wake C M F, Fennell A. Morphological, physiological and endo-dormancy responses of three Vitis genotypes to short photoperiod[J]. Biologia Plantarum, 2000, 109: 203-210. [32]Eriksson M. Low levels of phytochrome A expression alters circadian rhythm and change levels of FLOWERING LOCUS T leading to early bud set in hybrid aspen[J]. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 2007, 46: S231-S1231. [33]Quail P H. Phytochrome-regulated gene expression[J]. Integra Plant Biology, 2007, 49: 11-20. [34]Kuhn N, Ormeno N J, Jaque Z G,et al. Photoperiod modifies the diurnal expression profile of VvA and VvB transcripts in field-grown grapevine leaves[J]. Journal of Plant Physiology, 2009, 166(15): 1172-1180. [35]Horvath D P, Chao W S, Suttle J C,et al. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge(Euphorbia esula)[J]. BMC Genomics, 2008, 9: 536. [36]段成国, 刘焕芳, 李宪利. 内源激素对落叶果榭芽休眠的调控[J]. 河北果树, 2005, (2): 27-40. [37]Khm^A. 种子休眠和萌发的生理变化[M]. 王抄生, 洪铁宝, 译, 北京: 农业出版杜, 1989: 52-59. [38]童哲. 光敏色素及光形态建成[A]. 见: 余叔文. 植物生理与分子生物学(第2版)[M]. 北京: 科学出版社, 1998: 633-653. [39]童哲, 赵玉锦, 王台, 等. 植物的光受体和光控发育研究[J]. 植物学报, 2000, 42: 111-115. [40]Franklin K A. Light and temperature signal crosstalk in plant development[J]. Science Direct, 2009, 12(1): 63-68. [41]Heschel M S, Selby J, Butler C,et al. A new role for phytochromes in temperature-dependent germination[J]. New Phytolist, 2007, 174: 735-741. [42]Horvath D. Common mechanisms regulate flowering and dormancy[J]. Plant Science, 2009, 177: 523-531. [43]袁娟, 武天龙, 陈典. 光周期对扁豆真叶内源激素及游离氨基酸含量的影响[J]. 上海交通大学学报(农业科学版), 2004, 22(3): 215-226. [44]韩天富, 马凤鸣, 王金陵, 等. 光周期对大豆叶片内源激素含量及其平衡的影响[J]. 作物学报, 1996, 22(6): 661-667. [45]Mazzella M A, Arana M V, Staneloni R J,et al. Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light[J]. Plant Cell, 2005, 17: 2507-2516. [46]Seo M, Hanada A, Kuwahara A,et al. Regulation of hormone metabolism in arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism[J]. Plant Journal, 2006, 48(3): 354-366. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[11] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[12] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[13] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[14] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[15] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||