Reference:[1] Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.[2] Zhao K F. Crop salt resistance crop physiology[M]. Beijing: Agricultural Press, 1990: 249-313.[3] Ma X F, Zhang J Z, Song F B. Research advances in physiological ecology adaptation of plant salt-tolerance[J]. Science & Technology Review, 2011, 29(14): 76-79.[4] Jing Y X, Yuan Q H. Effects of salt stress on seedling growth of alfalfa (Medicago sativa)and ion distribution in different alfalfa organs[J]. Acta Prataculturae Sinica, 2011, 20(2): 134-139.[5] Zhang Y F, Liang Z W, Sui L, et al. Effect on physiological characteristic of Medicago sativa under saline-alkali stress at seeding stage[J]. Acta Prataculturae Sinica, 2009, 18(4): 230-235.[6] Wang Z Q. China saline soil[M]. Beijing: Science Press, 1993.[7] Toshio Yamaguchi, Eduardo Blumwald. Developing salt tolerant crop plants:challenges and opportunities[J]. Trends in Plant Science, 2005, 10(12): 616-620.[8] Qin F M, Zhang H X, Wu Y, et al. Effects of salt stress on germination and seedling growth of Medicago falcata[J]. Acta Prataculturae Sinica, 2010, 19(4): 71-78.[9] Liu A R, Zhang Y B, Zhong Z H, et al. Effects of salt stress on the growth and osmotica accumulation of Coleus blumei[J]. Acta Prataculturae Sinica, 2013, 22(2): 211-218.[10] Liu J, Cai H, Liu Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2013, 22(2): 250-256.[11] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[12] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115(1): 1-22.[13] Zou L N, Zhou Z Y, Yan S Y, et al. Effect of salt stress on physiological and biochemical characteristics of Amorpha fruticosa seedlings[J]. Acta Prataculturae Sinica, 2011, 20(3): 84-90.[14] Zheng Z J, Wang S M, Zong C X. Chinese edible beans learn[M]. Beijing: China Agriculture Press, 1997.[15] Zong C X, Wang Z G, Guan J P, et al. Pea seed Resource Description Specifications and Date Standard[M]. Beijing: China Agriculture Press, 2005.[16] Qu X X, Huang Z Y. The adaptive strategies of halophyte seed germination[J]. Acta Ecologica Sinica, 2005, 25(9): 2389-2398.[17] Lamattina L, Garca M C, Graziano M, et al. Nitricoxide: the versatility of an extensive signal molecule[J]. Annual Review of Plant Biology, 2003, 54: 109-136.[18] Beligni M V, Lamattina L. Nitricoxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues[J]. Planta, 1999, 208: 337-344.[19] Zhao M G, Tian Q Y, Zhang W H. Nitric oxide synthase dependent nitric oxide productions associated with salt tolerance in Arabidopsis[J]. Plant Physiology, 2007, 144(1): 206-217.[20] Wang X Y, Shen W B, Xu L L. Exogenous nitric oxide alleviates osmotic stress-induced membrane lipid peroxidation in wheat seedling leaves[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(2): 195-200. [21] Akio U, Andre T J, Takashi H, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163(3): 515-523. [22] Yong S Y. Effects of exogenous nitric oxide on seed germination and physiological characteristics of Pepper seedling under salt stress[D]. Lanzhou: Gansu Agricultural University, 2007.[23] Wang F, Chang P P, Chen Y P, et al. Effect of exogenous nitric oxide on seedling growth and physiological characteristics of maize seedlings under cadmium stress[J]. Acta Prataculturae Sinica, 2013, 22(2): 178-186.[24] Zhang Y Y, Liu J, Liu Y L. Nitric oxide alleviates growth inhibition of maize seedlings under NaCl stress[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(4): 455-459.[25] Zhang S Z, Li P Y, Wang J H, et al. Effect of soaking seeds in exogenous NO donor SNP on catalpa speciosa seedling under salt stress[J]. Seed, 2013, 32(7): 22-24. [26] Zhao Y, Ai J, Wang Z X, et al. Effects of exogenous nitric oxide on chlorophyll fluorescence and antioxidant enzymes activity in amur grape (Vitis Amurensis Rupr) leaves under salt stress[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(6): 867-872.[27] Xie Y Z, He P, Wang C Y, et al. The effects of exgeneous CaCl2, SA and SNP on physiological traits of cassia obtusifolia L. seedlings under NaCl stress[J]. Journal of Southwest University(Natural Science), 2013, 35(3): 36-42.[28] Liu J X, Hu H B, Wang X, et al. Effect of nitric oxide on proline accumulation in ryegrass seedlings subjected to salt stress[J]. Acta Agrectir Sinica, 2010, 18(6): 787-791.[29] Li H S, Sun Q, Zhao S J, et al. Plant physiology and biochemistry experimental principles and techniques[M]. Beijing: Higher Education Press, 2000: 164-169, 260. [30] Niu J Y, Yang Q F. Crop cultivation methods[M]. Lanzhou: Gansu Ethnic Publishing House, 1998: 85-88.[31] Zhang Z L, Qu W J. Plant physiology guide[M]. Beijing: Higher Education Press, 2003.[32] Bohra J S, D rffling H, D rffling K. Salinity tolerance of rice with reference to endogenous and exogenous abscisic acid[J]. Journal of Agronomy and Crop Science, 1995, 174: 79-86.[33] Wang F H, Chen S C, Li C H, et al. Effect of exogenous NO donor on seeds germination of cabbage under NaCl stress[J]. Seed, 2010, 29(2): 9-12.[34] Jiang M Y, Yang W Y, Xu J, et al. Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress[J]. Acta Botanica Sinica, 1994, 36(4): 289-295. [35] Li W Y, Xu W H, Hu X F, et al. Effects of Zinc stress on growth, physiological and biochemical and Zn uptake of Ryegrass (Lolium perenne L.)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(5): 190-194.[36] Ruan H H, Shen W B, Ye M B, et al. Nitric oxide protective effect against oxidative damage under salt stress in wheat leaves[J]. Chinese Science Bulletin, 2001, 46(23): 1993-1997.[37] Wu X X, Zhu Y L, Zhu W M, et al. Protective effects of exogenous nitric oxide on oxidative damage in tomato seedling leaves under NaCl stress[J]. Scientia Agricultura Sinica, 2006, 39(3): 575-581. [38] Zhang Y K, Cui X M, Yang S X, et al. Effects of exogenous nitric oxide on active oxygen metabolism and photosynthetic characteristics of tomato seedlings under cadmium stress[J]. Chinese Journal of Appled Ecology, 2010, 21(6): 1432-1438. [39] Zhu X J, Liang Y C, Yang J S, et al. Effect of exogenous calcium on antioxidant enzyme activity and lipid peroxidation of rice seedlings under salt stress[J]. Acta Pedologica Sinica, 2005, 42(3): 453-458.[40] Jiao J, Wang X F, Yang F J, et al. Effects of exogenous NO on the growth and antioxidant enzyme activities of cucumber seedlings under NO_3~- stress[J]. Chinese Journal of Applied Ecology, 2009, 20(12): 3009-3012.[41] Yu J H, Yong S Y, Zhang J B, et al. Protective effects of exogenous nitric oxide on oxidative damage in pepper seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(9): 1801-1806.[42] Feng R Z, Wei Q.Alleviative effects of exogenous nitric oxide on oxidative damage metabolism in A vena staiva seedings under NaCl stress[J].Grassland and Turf, 2012, 32(6): 7-10.[43] Wu X X, Chen J L, Cha D S, et al. Effects of exogenous nitric oxide on reactive oxygen metabolism in tomato seedlings under NaCl stress[J]. Plant Nutrition and Fertilizer Science , 2009, 15(2): 422-428.[44] Xiao Q, Zheng H L. Nitric oxide and plant stress response[J]. Plant Physiology Communications, 2004, 40(3): 379-384. [45] Lu X, Shi W D, Wang Y L, et al. Effects of exogenous nitric oxide on activity of antioxidative enzyme and growth of oat seedlings under salt stress[J]. Pratacultural Science, 2011, 28(12): 2150-2156.[46] Zhou W H, Shi S L, Kou J T. Effect of nitric oxide on alfalfa seed germination under Nacl stress[J]. Journal of Nuclear Agricultural Sciences , 2012, 26(4): 710-716.[47] Fan H F, Guo S R, DuAN J J, et al. Effects of nitric oxide on the growth and glutathione dependent antioxidative system in cucumber(Cucum is sativus L.)[J]. Acta Ecologica Sinica, 2008, 28(6): 2511-2517. 参考文献:[1] Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.[2] 赵可夫. 作物抗盐生理[M]. 北京: 农业出版社, 1990: 249-313.[3] 马献发, 张继舟, 宋凤斌. 植物耐盐的生理生态适应性研究进展[J]. 科技导报, 2011, 29(14): 76-79.[4] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J]. 草业学报, 2011, 20(2): 134-139.[5] 张永锋, 梁正伟, 隋丽, 等. 盐碱胁迫对苗期紫花苜蓿生理特性的影响[J]. 草业学报, 2009, 18(4): 230-235.[6] 王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993.[7] Toshio Yamaguchi, Eduardo Blumwald. Developing salt tolerant crop plants:challenges and opportunities[J]. Trends in Plant Science, 2005, 10(12): 616-620.[8] 秦峰梅, 张红香, 武祎, 等. 盐胁迫对黄花苜蓿发芽及幼苗生长的影响[J]. 草业学报, 2010, 19(4): 71-78.[9] 刘爱荣, 张远兵, 钟泽华, 等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响[J]. 草业学报, 2013, 22(2): 211-218.[10] 刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较[J]. 草业学报, 2013, 22(2): 250-256.[11] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[12] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115(1): 1-22.[13] 邹丽娜, 周志宇, 颜淑云, 等. 盐分胁迫对紫穗槐幼苗生理生化特性的影响[J]. 草业学报, 2011, 20(3): 84-90.[14] 郑卓杰, 王述民, 宗绪晓. 中国食用豆类学[M]. 北京: 中国农业出版社, 1997.[15] 宗绪晓, 王志刚, 关建平, 等. 豌豆种资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2005.[16] 渠晓霞, 黄振英. 盐生植物种子萌发对环境的适应对策[J]. 生态学报, 2005, 25(9): 2389-2398.[17] Lamattina L, Garca M C, Graziano M, et al. Nitricoxide: the versatility of an extensive signal molecule[J]. Annual Review of Plant Biology, 2003, 54: 109-136.[18] Beligni M V, Lamattina L. Nitricoxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues[J]. Planta, 1999, 208: 337-344.[19] Zhao M G, Tian Q Y, Zhang W H. Nitric oxide synthase dependent nitric oxide productions associated with salt tolerance in Arabidopsis[J]. Plant Physiology, 2007, 144(1): 206-217.[20] 王宪叶, 沈文飚, 徐朗莱. 外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J]. 植物生理与分子生物学学报, 2004, 30(2): 195-200. [21] Akio U, Andre T J, Takashi H, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163(3): 515-523. [22] 雍山玉. 外源一氧化氮对盐胁迫下辣椒种子萌发和幼苗生理特性的影响[D]. 兰州: 甘肃农业大学, 2007.[23] 王芳, 常盼盼, 陈永平, 等. 外源NO对镉胁迫下玉米幼苗生长和生理特性的影响[J]. 草业学报, 2013, 22(2): 178-186.[24] 张艳艳, 刘俊, 刘友良. 一氧化氮缓解盐胁迫对玉米生长的抑制作用[J]. 植物生理与分子生物学学报, 2004, 30(4): 455-459.[25] 张宋智, 李平英, 王军辉, 等. 外源 NO 供体 SNP 浸种对盐胁迫下黄金树幼苗生长的影响[J]. 种子, 2013, 32(7): 22-24. [26] 赵滢, 艾军, 王振兴, 等. 外源 NO 对 NaCl 胁迫下山葡萄叶片叶绿素荧光和抗氧化酶活性的影响[J]. 核农学报, 2013, 27(6): 867-872.[27] 谢英赞, 何平, 王朝英, 等. 外源Ca2+, SA, NO对盐胁迫下决明幼苗生理特性的影响[J]. 西南大学学报, 2013, 35(3): 36-42.[28] 刘建新, 胡浩斌, 王鑫, 等. 一氧化氮参与盐胁迫下黑麦草幼苗脯氨酸积累的调控[J]. 草地学报, 2010, 18(6): 787-791.[29] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-169, 260. [30] 牛俊义, 杨祈峰. 作物栽培学研究方法[M]. 兰州: 甘肃民族出版社, 1998: 85-88.[31] 张志良, 瞿伟菁. 植物生理学指导[M]. 北京: 高等教育出版社, 2003.[32] Bohra J S, Drffling H, Drffling K. Salinity tolerance of rice with reference to endogenous and exogenous abscisic acid[J]. Journal of Agronomy and Crop Science, 1995, 174: 79-86.[33] 王凤华, 陈双臣, 李春花, 等. 外源一氧化氮供体SNP对盐胁迫下甘蓝种子萌发的影响[J]. 种子, 2010, 29(2): 9-12.[34] 蒋明义, 杨文英, 徐江, 等. 渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J]. 植物学报, 1994, 36(4): 289-295. [35] 李文一, 徐卫红, 胡小凤, 等. Zn胁迫对黑麦草幼苗生长、生理生化及Zn吸收的影响[J]. 农业工程学报, 2007, 23(5): 190-194.[36] 阮海华,沈文飚, 叶茂炳,等. 一氧化氮对盐胁迫下小麦叶片的氧化损伤的保护效应[J]. 科学通报, 2001, 46(23): 1993-1997.[37] 吴雪霞, 朱月林, 朱为民, 等. 外源一氧化氮对NaCl胁迫下番茄幼苗叶片氧化损伤的保护效应[J]. 中国农业科学, 2006, 39(3): 575-581. [38] 张义凯, 崔秀敏, 杨守祥, 等. 外源NO对镉胁迫下番茄活性氧代谢及光合特性的影响[J]. 应用生态学报, 2010, 21(6): 1432-1438. [39] 朱晓军, 梁永超, 杨劲松, 等. 钙对盐胁迫下水稻幼苗抗氧化酶活性和膜脂过氧化作用的影响[J]. 土壤学报, 2005, 42(3): 453-458.[40] 焦娟, 王秀峰, 杨凤娟, 等. 外源一氧化氮对硝酸盐胁迫下黄瓜幼苗生长及抗氧化酶活性的影响[J]. 应用生态学报, 2009, 20(12): 3009-3012.[41] 郁继华, 雍山玉, 张洁宝, 等. 外源NO对NaCl胁迫下辣椒幼苗氧化损伤的保护效应[J]. 西北植物学报, 2007, 27(9): 1801-1806.[42] 冯瑞章, 魏琴. 外源NO对NaCl胁迫下燕麦幼苗氧化损伤的缓解效应[J]. 草原与草坪, 2012, 32(6): 7-10.[43] 吴雪霞, 陈建林, 查丁石, 等. 外源一氧化氮对NaCl胁迫下番茄幼苗活性氧代谢的影响[J]. 植物营养与肥料学报, 2009, 15(2): 422-428.[44] 肖强, 郑海雷. 一氧化氮与植物胁迫响应[J]. 植物生理学通讯, 2004, 40(3): 379-384. [45] 芦翔, 石卫东, 王宜伦, 等. 外源NO对NaCl胁迫下燕麦幼苗抗氧化酶活性和生长的影响[J]. 草业科学, 2011, 28(12): 2150-2156.[46] 周万海, 师尚礼, 寇江涛. 一氧化氮对NaCl胁迫下苜蓿种子萌发的影响[J]. 核农学报, 2012, 26(4): 710-716.[47] 樊怀福, 郭世荣, 段九菊, 等. 外源NO对NaCl胁迫下黄瓜幼苗生长和谷胱甘肽抗氧化酶系统的影响[J]. 生态学报, 2008, 28(6): 2511-2517. |