Reference:[1] Li X Y, Lin J X, Li X J, et al. Growth adaptation and Na+ and K+ metabolism responses of Leymus chinensis seedlings under salt and alkali stresses[J]. Acta Prataculturae Sinica, 2013, 22(1): 201-209.[2] Lu J Y, Guo T. Effects of water stress on activities of protective enzyme and physiological characteristics in seedlings of two varieties of sweet sorghum[J]. Agricultural Research in the Arid Areas, 2010, 28(4): 89-93.[3] Zhang T B, Kang Y H, Hu W, et al. Study on salinity characteristics of takyric solonetz in Ningxia Yinbei Region[J]. Soils, 2012, 44 (6): 1001-1008.[4] Yin Y X. The formation of cracks alkaline earth, nature and improved ways[J]. Chinese Journal of Soil Science, 1985, (5): 206-208.[5] Li Y J, Wu L G, Lu Y X, et al. Amelioration of alali-soil with the by-product of burn coal smoke desulphurization in the field[J]. Acta Agriculturae Boreali-Sinica, 2004, 19(S1): 10-15.[6] Sakai Y, Matsumoto S, Sadakata M. Alkali soil reclamation with flue gas desulfurization gypsum in China and assessment of metal content in corn grains[J]. Soil and Sediment Contam, 2004, 13: 65-80.[7] Sun Z J, Zhao X H, Wang J, et al. Effect of amelioration of takyr solonetzs with FGDG on rhizosphere soil properties and root growth of lycium barbarum[J]. Forest Research, 2012, 25(1): 107-110. [8] Fan F, Han L P, Liu Z X, et al. Carbohydrates and predicted ethanol yield of different sweet sorghum cultivars at two nitrogen levels in arid region[J]. Journal of China Agricultural University, 2013, 18(4): 28-36. [9] Xie G H, Zhuang H Y, Wei W L, et al. The principle of non-food energy crop production and cultivation of marginal[M]. Beijing: China Agricultural University Press, 2011.[10] Wang X L, Cheng X, Xie G H, et al. Effect of NaCl stress on physiological characteristics of sweet sorghum in sprout stages[J]. Ecology and Environment, 2010, 19(10): 2285-2290.[11] Zhang C X, Bian M Z, Yu H, et al. Effect of Na2CO3 stress on the physiological characteristics of sweet sorghum at germination and seedling stages[J]. Journal of Jinlin Agricultural University, 2011, 33(2): 134-138.[12] Liu X X, Luo J J. Eco-physiological responses of pea seedlings to salt stress[J]. Pratacultural Science, 2010, 27(7): 88-93.[13] Zhang L, Zhang H X, Yang S, et al. Research advances in plant salt-tolerance mechanism[J]. Journal of Southwest Forestry College, 2010, 30(3): 82-86.[14] ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71. [15] Yasar F, Ellialtioglu S, Yildiz K. Effect of salt stress on antioxidant defense systems,lipid peroxidation, and chlorophyll content in green bean[J]. Russion Journal of Plant Physiology, 2008, 55(6): 782-786.[16] Wu F Y, Ge J L. The effect of NaCl-stressed on resistance enzymes activity in sweet sorghum seedlings[J]. Chinese Agricultural Science Bulletin, 2009, 25(6): 136-139.[17] Dai L Y, Zhang L J, Ruan Y Y, et al. Research on physiological characteristics and the assessment of tolerance of different varieties of sweet sorghum seedlings to saline-sodic stress[J]. Agricultural Research In The Arid Areas, 2012, 30(2): 77-83.[18] Gao J F. Plant physiology experimental techniques[M]. Xi'an: World Publishing Company, 2000.[19] Zou Q. Plant physiology experimental guidance[M]. Beijing: China Agriculture Press, 2000.[20] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25: 239-250.[21] Wei X J, Yin Y L, Lu Z G, et al. Effects of NaCl stress on growth and physiological indexes of five greening plant seedlings and comprehensive evaluation of their salt tolerance[J]. Journal of Plant Resources and Environment, 2011, 20(2):35-42.[22] Wu C L, Zhou C L, Yin J L, et al. NaCl stress on the growth, ion uptake and transport of helianthus tuberosus L. seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(11): 2289-2296.[23] Claudivan F L, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49: 107-120.[24] Cong J Y, Yang G Y, Zhang Y, et al. Study of the osmotic stress tolerance in different varieties of sweet sorghum[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 136-140.[25] Hao N B, Du W G, Ge Q Y, et al. Progress in the breeding of soybean for high photosynthetic efficiency[J]. Acta Botanica Sinica, 2002, 44(3): 253-258.[26] Yang S P, Wei C Z, Liang Y C. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes[J]. Scientia Agricultura Sinica, 2010, 43(8): 1585-1593.[27] Du R F, Hao W F, Wang L F. Dynamic responses on anti-oxidative defense system and lipid peroxidation of Lespedeza davurica to drought stress and re-watering[J]. Acta Prataculturae Sinica, 2012, 21(2): 51-61.[28] Kuang Y, Li T X, Yu H Y. Effect of nitrogen on protective enzyme activities and lipid peroxidation in triticale genotypes with different N use efficiency[J]. Acta Prataculturae Sinica, 2011, 20(6): 93-100.[29] Qi J, Xu Z, Wang H Q, et al. Physiological and biochemical analysis of the leaves of Elymus under dry farming conditions[J]. Acta Prataculturae Sinica, 2009, 18(1): 39-45.[30] Hu M Y, Zhang Z B, Xu P. Research progress on important enzymes of crop photosynthesis and its relations to resisting drought and saving water[J]. Agricultural Research in the Arid Areas, 2008, 26(2): 250-256.[31] Liu A R, Zhang Y B, Zhong Z H, et al. Effects of salt stress on the growth and osmotica accumulation of Coleus blumei[J]. Acta Prataculturae Sinica, 2013, 22(2): 211-218.[32] Liu J, Cai H, Liu Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2013, 22(2): 250-256. 参考文献:[1] 李晓宇, 蔺吉祥, 李秀军, 等. 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应[J]. 草业学报, 2013, 22(1): 201-209.[2] 吕金印, 郭涛. 水分胁迫对不同品种甜高粱幼苗保护酶活性等生理特性的影响[J]. 干旱地区农业研究, 2010, 28(4): 89-93.[3] 张体彬, 康跃虎, 胡伟, 等. 宁夏银北地区龟裂碱土盐分特征研究[J]. 土壤, 2012, 44 (6): 1001-1008.[4] 殷允相. 龟裂碱土的形成、性质及改良途径[J]. 土壤通报, 1985, (5): 206-208.[5] 李跃进, 乌力更, 芦永兴, 等. 燃煤烟气脱硫副产物改良碱化土壤田间试验研究[J]. 华北农学报, 2004, 19(S1): 10-15.[6] Sakai Y, Matsumoto S, Sadakata M. Alkali soil reclamation with flue gas desulfurization gypsum in China and assessment of metal content in corn grains[J]. Soil and Sediment Contam, 2004, 13: 65-80.[7] 孙兆军, 赵秀海, 王静, 等. 脱硫石膏改良龟裂碱土对枸杞根际土壤理化性质及根系生长的影响[J]. 林业科学研究, 2012, 25(1): 107-110. [8] 樊帆, 韩立朴, 刘祖昕, 等. 氮素对干旱地区甜高粱碳水化合物和理论乙醇产量的影响研究[J]. 中国农业大学学报, 2013, 18(4): 28-36. [9] 谢光辉, 庄会永, 危文亮, 等. 非粮能源植物生产原理和边际地栽培[M]. 北京: 中国农业大学出版社, 2011.[10] 王秀玲, 程序, 谢光辉, 等. NaCl 胁迫对甜高粱发芽期生理生化特性的影响[J]. 生态环境学报, 2010, 19(10): 2285-2290.[11] 张春霞, 边鸣镝, 于慧, 等. 碳酸钠胁迫对甜高粱种子萌发和幼苗期生理特性的影响[J]. 吉林农业大学学报, 2011, 33(2): 134-138.[12] 刘新星, 罗俊杰. 豌豆幼苗在盐胁迫下的生理生态响应[J]. 草业科学, 2010, 27(7): 88-93.[13] 张丽, 张华新, 杨升, 等. 植物耐盐机理的研究进展[J]. 西南林学院学报, 2010, 30(3): 82-86.[14] ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71. [15] Yasar F, Ellialtioglu S, Yildiz K. Effect of salt stress on antioxidant defense systems,lipid peroxidation, and chlorophyll content in green bean[J]. Russion Journal of Plant Physiology, 2008, 55(6): 782-786.[16] 吴发远, 葛江丽. NaCl 胁迫对甜高粱幼苗抗性酶活性的影响[J]. 中国农学通报, 2009, 25(6): 136-139.[17] 戴凌燕, 张立军, 阮燕晔, 等. 盐碱胁迫下不同品种甜高粱幼苗生理特性变化及耐性评价[J]. 干旱地区农业研究, 2012, 30(2): 77-83.[18] 高俊凤. 植物生理学实验技术[M]. 西安:世界图书出版公司, 2000.[19] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.[20] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25: 239-250.[21] 魏秀君, 殷云龙, 芦治国, 等. NaCl胁迫对5种绿化植物幼苗生长和生理指标的影响及耐盐性综合评价[J]. 植物资源与环境学报, 2011, 20(2):35-42.[22] 吴成龙, 周春霖, 尹金来, 等. NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响[J]. 西北植物学报, 2006, 26(11): 2289-2296.[23] Claudivan F L, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49: 107-120.[24] 丛靖宇, 杨冠宇, 张烨, 等. 不同品种甜高粱幼苗耐受渗透胁迫能力的研究[J]. 华北农学报, 2010, 25(4): 136-140.[25] Hao N B, Du W G, Ge Q Y, et al. Progress in the breeding of soybean for high photosynthetic efficiency[J]. Acta Botanica Sinica, 2002, 44(3): 253-258.[26] 杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响[J]. 中国农业科学, 2010, 43(8): 1585-1593.[27] 杜润峰, 郝文芳, 王龙飞. 达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应[J]. 草业学报, 2012, 21(2): 51-61.[28] 匡艺, 李廷轩, 余海英. 氮素对不同氮效率小黑麦基因型叶片保护酶活性和膜脂过氧化的影响[J]. 草业学报, 2011, 20(6): 93-100.[29] 祈娟, 徐柱, 王海清, 等. 旱作条件下披碱草属植物叶的生理生化特征分析[J]. 草业学报, 2009, 18(1): 39-45.[30] 胡梦芸, 张正斌, 徐萍. 作物几种光合酶与抗旱节水的关系研究进展[J]. 干旱地区农业研究, 2008, 26(2): 250-256.[31] 刘爱荣, 张远兵, 钟泽华, 等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响[J]. 草业学报, 2013, 22(2): 211-218.[32] 刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较[J]. 草业学报, 2013, 22(2): 250-256. |