[1] Anderson D E.Taxonomy and distribution of the genus Phalaris. Iowa State Journal of Science, 1961, 36: 1-96. [2] Gomm F B.Accumulation of NO3 and NH4 in reed canarygrass. Agronomy Journal, 1979, 71(4): 627-630. [3] Grabber J H, Allinson D W.Anatomical structure and digestibility of reed canarygrass cultivars and hybrid ryegrass. Grass and Forage Science, 2010, 47(4): 400-404. [4] Apfelbaum S I, Sams C E.Ecology and control of reed canary grass (Phalaris arundinacea L.). Natural Areas Journal, 1987, 7: 69-74. [5] Barnes W J.The rapid growth of a population of reed canarygrass (Phalaris arundinacea L.) and its impact on some riverbottom herbs. Journal of the Torrey Botanical Society, 1999, 126(2): 133-138. [6] Morrison S L, Molofsky J.Environmental and genetic effects on the early survival and growth of the invasive grass Phalaris arundinacea. Revue Canadienne De Botanique, 1999, 77(10): 1447-1453. [7] Singh S, Kirkwood R C, Marshall G.Biology and control of Phalaris minor Retz (Litterseed canarygrass) in wheat. Crop Protection, 1999, 18(1): 1-16. [8] Als G, Ferdy J B, Molofsky J.Genetic composition and morphological variation among populations of the invasive grass, Phalaris arundinacea. Canadian Journal of Botany, 2002, 80(7): 779-785. [9] Lavergne S, Molofsky J.Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Critical Reviews in Plant Sciences, 2004, 23(5): 415-429. [10] Brodersen C, Lavergne S, Molofsky J.Genetic variation in photosynthetic characteristics among invasive and native populations of reed canarygrass (Phalaris arundinacea). Biological Invasions, 2008, 10(8): 1317-1325. [11] Spyreas G, Wilm B W, Plocher A E, et al. Biological consequences of invasion by reed canary grass (Phalaris arundinacea). Biological Invasions, 2010, 12(5): 1253-1267. [12] Martina J P, Ende C N V. Highly plastic response in morphological and physiological traits to light, soil-N and moisture in the model invasive plant, Phalaris arundinacea. Environmental & Experimental Botany, 2012, 82(82): 43-53. [13] Waring E F, Maricle B R.Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environmental & Experimental Botany, 2012, 77(2): 77-86. [14] Yang C D, Zhang X, Zhou C Y, et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 2011, 206(7): 653-661. [15] Yang C D, Zhang X, Li J K, ,et al. Anatomy and histochemistry of roots and shoots in wild rice (Zizania latifolia Griseb.). Journal of Botany, 2014: Article ID 181727. [16] Zhang X, Yang C D, Seago Jr J L. Anatomical and histochemical traits of roots and stems of Artemisia lavandulaefolia and A. selengensis (Asteraceae) in the Jianghan Floodplain, China. Flora, 2018, 239: 87-97. [17] Lenzewski N, Mueller P, Meier R J, et al. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna- a planar optode study of belowground gas exchange between plants and sediment. New Phytologist, 2018, doi: 10.1111/nph.14973. [18] Yang C D, Zhang X.Permeability and supplement structures of stems of Paspalum distichum. Bulletin of Botanical Research, 2013, 33(5): 564-568. 杨朝东, 张霞. 双穗雀稗(Paspalum distichum)通透性生理和茎解剖结构补充研究. 植物研究, 2013, 33(5): 564-568. [19] Zhang X, Yang C D, Ning G G.The developmental comparison of apoplastic barriers in Cynodon dactylon and Paspalum distichum roots. Hubei Agricultural Sciences, 2013, 52(20): 4991-4994. 张霞, 杨朝东, 宁国贵. 狗牙根和双穗雀稗根中质外体屏障结构发育过程的比较研究. 湖北农业科学, 2013, 52(20): 4991-4994. [20] Soukup A, Armstrong W, Schreiber L, et al. Apoplastic barriers to radial oxygen loss and solute penetration: A chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytologist, 2007, 173: 264-278. [21] Wang H F, Zeng B, Li Y, et al. Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir region. Chinese Journal of Plant Ecology, 2008, 32(5): 977-984. 王海锋, 曾波, 李娅, 等. 长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响. 植物生态学报, 2008, 32(5): 977-984. [22] Jensen W A.Botanical histochemistry-principles and practice. San Francisco, CA: W H Freeman and Company, 1962. [23] Brundrett M C, Kendrick B, Peterson C A.Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotechnic and Histochemistry, 1991, 66(3): 111-116. [24] Seago Jr J L, Peterson C A, Enstone D E, et al. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots. Canadian Journal of Botany, 1999, 77(1): 122-134. [25] Brundrett M C, Enstone D E, Peterson C A.A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma, 1988, 146(2/3): 133-142. [26] Johansen D A.Plant microtechnique. New York: McGraw-Hill Book Company, inc, 1940. [27] Meyer C J, Seago J L, Peterson C A.Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Annals of Botany, 2009, 103(5): 687-702. [28] Meyer C J, Peterson C A.Casparian bands occur in the periderm of Pelargonium hortorum stem and root. Annals of Botany, 2011, 107(4): 591-598. [29] Yang C D, Li S F, Yao L, et al. A study of anatomical structure and apoplastic barrier characteristics of Hydrocotyle sibthorpioides. Acta Prataculturae Sinica, 2015, 24(7): 139-145. 杨朝东, 李守峰, 姚兰, 等. 天胡荽的解剖和屏障结构特征研究. 草业学报, 2015, 24(7): 139-145. [30] Yang C D, Li S F, Deng S M, et al. The study on anatomy and apoplastic barrier characters of Imperata cylindrica. Acta Prataculturae Sinica, 2015, 24(3): 213-218. 杨朝东, 李守峰, 邓仕明, 等. 白茅解剖结构和屏障结构特征研究. 草业学报, 2015, 24(3): 213-218. [31] Zhang X, Hu L J, Zhou C Y, et al. Studies on anatomy and apoplastic barrier histochemistry characters of Oenanthe javanica (Bl.) DC. adapted to wetland environment. China Vegetables, 2016, 7: 52-58. [32] Mc Manus H A, Seago J L, Marsh L C. Epifluorescent and histochemical aspects of shoot anatomy of Typha latifolia L., Typha angustifolia L. and Typha glauca Godr. Annals of Botany, 2002, 90(4): 489-493. [33] Ranathunge K, Lin J, Steudle E, et al. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environment, 2011, 34: 1223-1240. [34] Watanabe H, Saigusa M, Morita S.Identification of casparian bands in the mesocotyl and lower internodes of rice (Oryza sativa L.) seedlings using fluorescence microscopy. Plant Production Science, 2006, 9: 390-394. [35] De Simone O, Haase K, Müller E, et al. Apoplastic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiologist, 2003, 132: 206-217. [36] Vecchia F D, Cuccato F, Rocca N L, et al. Endodermis-like sheaths in the submerged freshwater macrophyte Ranunculus trichophyllus Chaix. Annals of Botany, 1999, 83: 93-97. [37] Seago J L, Marsh L C, Stevens K J, et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Annals of Botany, 2005, 96(4): 565-579. [38] Vartapetian B B, Jackson M B.Plant adaptations to anaerobic stress. Annals of Botany, 1997, 79(1): 3-20. |